What is the perimeter of a polygon with vertices at

(−1, 3) , ​ (−1, 6) ​, (2, 10) , ​ (5, 6) ​​, and ​​ ​ (5, 3) ​?

Enter your answer in the box. Do not round any side lengths.​

Respuesta :

W0lf93
(-6,6) to (2,10) and (2,10) to (5,6) = square root of 3 squared plus 4 squared = 5 3 plus 5 plus 5 plus 3 plus 6 = 22

we know that

the perimeter of a polygon is the sum of the length sides

in this problem we have five vertices

so

the polygon has five sides

Let

[tex]A(-1,3)\\B(-1,6)\\C(2,10)\\D(5,6)\\E(5,3)[/tex]

the perimeter is equal to

[tex]P=AB+BC+CD+DE+AE[/tex]

The formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Step 1

Find the distance AB

[tex]A(-1,3)\\B(-1,6)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(6-3)^{2}+(-1+1)^{2}}[/tex]

[tex]d=\sqrt{(3)^{2}+(0)^{2}}[/tex]

[tex]dAB=3\ units[/tex]

Step 2

Find the distance BC

[tex]B(-1,6)\\C(2,10)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(10-6)^{2}+(2+1)^{2}}[/tex]

[tex]d=\sqrt{(4)^{2}+(3)^{2}}[/tex]

[tex]dBC=5\ units[/tex]

Step 3

Find the distance CD

[tex]C(2,10)\\D(5,6)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(6-10)^{2}+(5-2)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(3)^{2}}[/tex]

[tex]dCD=5\ units[/tex]

Step 4

Find the distance DE

[tex]D(5,6)\\E(5,3)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(3-6)^{2}+(5-5)^{2}}[/tex]

[tex]d=\sqrt{(-3)^{2}+(0)^{2}}[/tex]

[tex]dDE=3\ units[/tex]

Step 5

Find the distance AE

[tex]A(-1,3)\\E(5,3)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(3-3)^{2}+(5+1)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(6)^{2}}[/tex]

[tex]dAE=6\ units[/tex]

Step 6

Find the perimeter

the perimeter is equal to

[tex]P=AB+BC+CD+DE+AE[/tex]

substitute the values

[tex]P=3+5+5+3+6=22\ units[/tex]

therefore

the answer is

the perimeter of the polygon is [tex]22\ units[/tex]

ACCESS MORE