Respuesta :

[tex]f(x,y)=2x^2+3y^2-4x-5[/tex]
[tex]f_x=4x-4=0\implies x=1[/tex]
[tex]f_y=6y=0\implies y=0[/tex]

[tex]f(x,y)[/tex] has only one critical point at [tex](x,y)=(1,0)[/tex]. The function has Hessian

[tex]\mathbf H(x,y)=\begin{bmatrix}f_{xx}&f_{xy}\\f_{yx}&f_{yy}\end{bmatrix}=\begin{bmatrix}4&0\\0&6\end{bmatrix}[/tex]

which is positive definite for all [tex](x,y)[/tex], which means [tex]f(x,y)[/tex] attains a minimum at the critical point with a value of [tex]f(1,0)=-7[/tex].

To find the extrema (if any) along the boundary, parameterize it by [tex]x=4\cos t[/tex] and [tex]y=4\sin t[/tex], with [tex]0\le t<2\pi[/tex]. On the boundary, we have

[tex]f(x(t),y(t))=F(t)=2(4\cos t)^2+3(4\sin t)^2-4(4\cos t)-5=32\cos^2t+48\sin^2t-16\cos t-5[/tex]
[tex]F(t)=35-16\cos t-8\cos2t[/tex]

Find the critical points along the boundary:

[tex]F'(t)=16\sin t+16\sin2t=16\sin t+32\sin t\cos t=16\sin t(1+2\cos t)=0[/tex]
[tex]\implies t=0,\dfrac{2\pi}3,\pi,\dfrac{4\pi}3[/tex]

Respectively, plugging these values into [tex]F(t)[/tex] gives 11, 47, 43, and 47. We omit the first and third, as we can see the absolute extrema occur when [tex]F(t)=47[/tex].

Now, solve for [tex]x,y[/tex] for both cases:

[tex]t=\dfrac{2\pi}3\implies\begin{cases}x=4\cos t=-2\\y=4\sin t=2\sqrt3\end{cases}[/tex]

[tex]t=\dfrac{4\pi}3\implies\begin{cases}x=4\cos t=-2\\y=4\sin t=-2\sqrt3\end{cases}[/tex]

so [tex]f(x,y)[/tex] has two absolute maxima at [tex](x,y)=(-2,\pm2\sqrt3)[/tex] with the same value of 47.
ACCESS MORE