Consider substituting [tex]u=4+xy[/tex], so that [tex]\mathrm du=x\,\mathrm dy[/tex]. Then
[tex]\displaystyle\int_{x=a}^{x=b}\int_{y=a}^{y=b}\frac x{(4+xy)^2}\,\mathrm dy\,\mathrm dx=\int_{x=a}^{x=b}\int_{u=4+ax}^{u=4+bx}\frac1{u^2}\,\mathrm du\,\mathrm dx[/tex]
[tex]=\displaystyle\int_{x=a}^{x=b}\left(-\frac1u\right)\bigg|_{u=4+ax}^{u=4+bx}\,\mathrm dx[/tex]
[tex]=\displaystyle\int_{x=a}^{x=b}\left(\frac1{4+ax}-\frac1{4+bx}\right)\,\mathrm dx[/tex]
Then by similar substitutions, you can easily find that you end up with
[tex]\dfrac1a\ln|4+ax|-\dfrac1b\ln|4+bx|\bigg|_{x=a}^{x=b}[/tex]
[tex]=\dfrac1a\ln|4+ab|-\dfrac1b\ln|4+b^2|-\dfrac1a\ln|4+a^2|+\dfrac1b\ln|4+ab|[/tex]
[tex]=\dfrac1a\ln\left|\dfrac{4+ab}{4+a^2}\right|+\dfrac1b\ln\left|\dfrac{4+ab}{4+b^2}\right|[/tex]
Of course, this all assumes that the integrand is continuous over the domain of integration, which would require that [tex]a,b[/tex] are chosen such that [tex]xy\neq-4[/tex] for any [tex](x,y)\in[a,b]^2[/tex]. If in particular [tex]ab>-4[/tex], then we can write
[tex]=\dfrac1a\ln\dfrac{4+ab}{4+a^2}+\dfrac1b\ln\dfrac{4+ab}{4+b^2}[/tex]
and you can combine the logarithms if you like as
[tex]=\ln\sqrt[a]{\dfrac{4+ab}{4+a^2}}+\ln\sqrt[b]{\dfrac{4+ab}{4+b^2}}[/tex]
[tex]=\ln\left(\sqrt[a]{\dfrac{4+ab}{4+a^2}}\sqrt[b]{\dfrac{4+ab}{4+b^2}}\right)[/tex]