Respuesta :
Answer: sin pi/4 sin pi/6 = 1/2(cos pi/12 - cos 5pi/12)
correct on apex
Answer:
[tex] sin\frac{\pi}{4}sin\frac{\pi}{6}=\frac{1}{2}(cos\frac{\pi}{12}-cos\frac{5\pi}{12})[/tex]
Step-by-step explanation:
We are given that
[tex] sin\frac{\pi}{4} sin\frac{\pi}{6}[/tex]
We have to correct value in blank space.
We know that identity
[tex] sin xsiny=\frac{cos(x-y)-cos(x+y)}{2}[/tex]
Using this identity
[tex] sin\frac{\pi}{4}sin\frac{\pi}{6}=\frac{cos(\frac{\pi}{4}-\frac{\pi}{6})-cos(\frac{\pi}{4}+\frac{\pi}{6})}{2}[/tex]
[tex] sin\frac{\pi}{4}sin\frac{\pi}{6}=\frac{cos(\frac{3\pi-2\pi}{12}-cos(\frac{3\pi+2\pi}{12})}{2}[/tex]
[tex] sin\frac{\pi}{4}sin\frac{\pi}{6}=\frac{1}{2}(cos\frac{\pi}{12}-cos\frac{5\pi}{12})[/tex]
Answer:[tex] sin\frac{\pi}{4}sin\frac{\pi}{6}=\frac{1}{2}(cos\frac{\pi}{12}-cos\frac{5\pi}{12})[/tex]