Respuesta :

Space

Answer:

[tex]\displaystyle \frac{dy}{dx} = \frac{-2}{x^\Big{\frac{3}{2}}}[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = \frac{4}{\sqrt{x}}[/tex]

Step 2: Differentiate

  1. Derivative Property [Multiplied Constant]:                                                   [tex]\displaystyle y' = 4 \frac{d}{dx} \bigg[ \frac{1}{\sqrt{x}} \bigg][/tex]
  2. Basic Power Rule:                                                                                         [tex]\displaystyle y' = 4 \Bigg( \frac{1}{x^\Big{\frac{3}{2}}} \Bigg)[/tex]
  3. Simplify:                                                                                                         [tex]\displaystyle y' = \frac{4}{x^\Big{\frac{3}{2}}}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation