Respuesta :

We are asked to express r in terms of A, P, and t.

We first divide both sides of the equation by t, which gives us

                                         
                     [tex]\displaystyle{ \frac{A}{t}=P(1+r) [/tex], 


then, dividing both sides by P, we have

                     [tex]\displaystyle{ \frac{A}{Pt}=1+r [/tex].

Swap the sides:

                    [tex]\displaystyle{ 1+r= \frac{A}{Pt}[/tex] 
      
Finally subtracting 1 from both sides gives us

                     [tex]\displaystyle{ r=\frac{A}{Pt}-1[/tex].


Answer:  [tex]r=(\frac{A}{P})^{\frac{1}{t}}-1[/tex]


Step-by-step explanation

Compound interest is the addition of interest to the principal sum of a deposit or a loan.

Let P = principal amount which was taken as a loan then the accumulated amount A is given by

[tex]A=P(1+r)^t[/tex].......(1)

where, r is the rate of simple annual interest in decimal.

t is the time applied for interest.

For solving r divide both sides of equation by P in (1),we get

[tex]\frac{A}{P}=(1+r)^t\\\Rightarrow(\frac{A}{P})^{\frac{1}{t}}=1+r\\\Rightarrow\ r=(\frac{A}{P})^{\frac{1}{t}}-1[/tex].

ACCESS MORE