Let f(x,y)=x2 −y2. find the gradient of f at the point (√2,1). sketch the level curve of f through this point, together with the gradient at that point. g

Respuesta :

Space

Answer:

[tex]\displaystyle \nabla f(\sqrt{2}, 1) = 2\sqrt{2} \hat{\i} - 2 \hat{\j}[/tex]

General Formulas and Concepts:
Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Multivariable Calculus

Differentiation

  • Partial Derivatives
  • Derivative Notation

Gradient:                                                                                                               [tex]\displaystyle \nabla f(x, y, z) = \frac{\partial f}{\partial x} \hat{\i} + \frac{\partial f}{\partial y} \hat{\j} + \frac{\partial f}{\partial z} \hat{\text{k}}[/tex]

Gradient Property [Addition/Subtraction]:                                                           [tex]\displaystyle \nabla \big[ f(x) + g(x) \big] = \nabla f(x) + \nabla g(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle f(x, y) = x^2 - y^2[/tex]

[tex]\displaystyle P(\sqrt{2}, 1)[/tex]

Step 2: Find Gradient

  1. [Function] Differentiate [Gradient]:                                                              [tex]\displaystyle \nabla f(x, y) = \frac{\partial f}{\partial x} \bigg[ x^2 - y^2 \bigg] \hat{\i} + \frac{\partial f}{\partial y} \bigg[ x^2 - y^2 \bigg] \hat{\j}[/tex]
  2. [Gradient] Rewrite [Gradient Property - Addition/Subtraction]:                [tex]\displaystyle \nabla f(x, y) = \bigg[ \frac{\partial f}{\partial x}(x^2) - \frac{\partial f}{\partial x}(y^2) \bigg] \hat{\i} + \bigg[ \frac{\partial f}{\partial y}(x^2) - \frac{\partial f}{\partial y}(y^2) \bigg] \hat{\j}[/tex]
  3. [Gradient] Differentiate [Derivative Rule - Basic Power Rule]:                  [tex]\displaystyle \nabla f(x, y) = 2x \hat{\i} - 2y \hat{\j}[/tex]
  4. [Gradient] Substitute in point:                                                                     [tex]\displaystyle \nabla f(\sqrt{2}, 1) = 2\sqrt{2} \hat{\i} - 2(1) \hat{\j}[/tex]
  5. [Gradient] Simplify:                                                                                       [tex]\displaystyle \nabla f(\sqrt{2}, 1) = 2\sqrt{2} \hat{\i} - 2 \hat{\j}[/tex]

∴ the gradient of the given f(x, y) function is equal to <2√2, -2>.

---

Learn more about gradient: https://brainly.com/question/15306869

Learn more about multivariable calculus: https://brainly.com/question/17433118

---

Topic: Multivariable Calculus

Unit: Directional Derivatives

Ver imagen Space
ACCESS MORE