contestada

Help please!! A bacteria culture is started with 300 bacteria. After 4 hours, the population had grown to 500 bacteria. If the population grows exponentially. a: write a recursive formula for the number of bacteria. b: write an explicit formula for the number of bacteria. c: if this trend continues, how many bacteria will there be in 1 day?

Respuesta :

The answer is 1,500 bacteria will be there in 1 day.

Answer:

a).[tex]P_{t}=\frac{5}{3}P_{t-1}[/tex]

b).[tex]A_{t}=300e^{0.1277\times t}[/tex]

c). 6429 bacteria

Step-by-step explanation:

Population of the bacteria grows exponentially.

Therefore, growth of the bacteria will be represented by the formula

[tex]P_{t}=P_{0}e^{kt}[/tex]

Where [tex]P_{t}[/tex] = Population of the bacteria after time t

[tex]P_{0}[/tex] = Initial population of the bacteria

k = growth constant

t = time taken for growth

Now we plug in the values in the formula

[tex]P_{t}[/tex] = 500

[tex]P_{0}[/tex] = 300

Time t = 4 hours

[tex]500=300e^{4k}[/tex]

[tex]e^{4k}=\frac{500}{300}[/tex]

Now we take the natural log (ln) on both the sides

[tex]ln(e^{4k})=ln(\frac{500}{300})[/tex]

4k(lne) = ln(500) - ln(300)

4k = 6.2146 - 5.7038

4k = 0.5108

k = [tex]k=\frac{0.5108}{4}=0.1277[/tex]

a). Recursive formula for the sequence formed by the bacterial growth

Since [tex]P_{t}=(1+r)P_{t-1}[/tex]

500 = (1 + r)300

[tex](1+r)=\frac{5}{3}[/tex]

r = [tex]\frac{5}{3}-1=\frac{2}{3}[/tex]

Therefore, the recursive formula will be

[tex]P_{t}=\frac{5}{3}P_{t-1}[/tex]

b). Explicit formula for the number of the bacteria will be

[tex]A_{t}=300e^{0.1277\times t}[/tex]

c). We have to calculate the number of bacteria after 24 hours

[tex]A_{t}=300e^{0.1277\times 24}[/tex]

[tex]A_{t}=300e^{3.0648}[/tex]

[tex]A_{t}=300\times 21.43[/tex]

[tex]A_{t}=6429[/tex] bacteria

ACCESS MORE