Respuesta :
Answer:
a).[tex]P_{t}=\frac{5}{3}P_{t-1}[/tex]
b).[tex]A_{t}=300e^{0.1277\times t}[/tex]
c). 6429 bacteria
Step-by-step explanation:
Population of the bacteria grows exponentially.
Therefore, growth of the bacteria will be represented by the formula
[tex]P_{t}=P_{0}e^{kt}[/tex]
Where [tex]P_{t}[/tex] = Population of the bacteria after time t
[tex]P_{0}[/tex] = Initial population of the bacteria
k = growth constant
t = time taken for growth
Now we plug in the values in the formula
[tex]P_{t}[/tex] = 500
[tex]P_{0}[/tex] = 300
Time t = 4 hours
[tex]500=300e^{4k}[/tex]
[tex]e^{4k}=\frac{500}{300}[/tex]
Now we take the natural log (ln) on both the sides
[tex]ln(e^{4k})=ln(\frac{500}{300})[/tex]
4k(lne) = ln(500) - ln(300)
4k = 6.2146 - 5.7038
4k = 0.5108
k = [tex]k=\frac{0.5108}{4}=0.1277[/tex]
a). Recursive formula for the sequence formed by the bacterial growth
Since [tex]P_{t}=(1+r)P_{t-1}[/tex]
500 = (1 + r)300
[tex](1+r)=\frac{5}{3}[/tex]
r = [tex]\frac{5}{3}-1=\frac{2}{3}[/tex]
Therefore, the recursive formula will be
[tex]P_{t}=\frac{5}{3}P_{t-1}[/tex]
b). Explicit formula for the number of the bacteria will be
[tex]A_{t}=300e^{0.1277\times t}[/tex]
c). We have to calculate the number of bacteria after 24 hours
[tex]A_{t}=300e^{0.1277\times 24}[/tex]
[tex]A_{t}=300e^{3.0648}[/tex]
[tex]A_{t}=300\times 21.43[/tex]
[tex]A_{t}=6429[/tex] bacteria