Respuesta :
Hello Shannonrodrigue. You can solve this by setting up an exponential growth equation.
[tex]A = A_ob^t[/tex]
[tex]3600 = 3000b^4[/tex]
Now we solve for b
[tex]3600 = 3000b^4[/tex]
[tex]\frac{3600}{3000} = \frac{3000b^{4}}{3000}[/tex]
[tex]\frac{6}{5} = b^4[/tex]
[tex]\sqrt[4]{\frac{6}{5}} = \sqrt[4]{b^4}[/tex]
[tex]\sqrt[4]{\frac{6}{5}} = b[/tex]
Now that we have found b, we can use the equation [tex]A = 3000b^t[/tex] to predict how many bacteria will be present after 10 hours.
[tex]b = \sqrt[4]{\frac{6}{5}}[/tex]
t = 10
[tex]A = 3000b^t[/tex]
[tex]A = 3000\sqrt[4]{\frac{6}{5}}^{10} = 4732.3228 = 4732 [/tex]
Answer = 4732
[tex]A = A_ob^t[/tex]
[tex]3600 = 3000b^4[/tex]
Now we solve for b
[tex]3600 = 3000b^4[/tex]
[tex]\frac{3600}{3000} = \frac{3000b^{4}}{3000}[/tex]
[tex]\frac{6}{5} = b^4[/tex]
[tex]\sqrt[4]{\frac{6}{5}} = \sqrt[4]{b^4}[/tex]
[tex]\sqrt[4]{\frac{6}{5}} = b[/tex]
Now that we have found b, we can use the equation [tex]A = 3000b^t[/tex] to predict how many bacteria will be present after 10 hours.
[tex]b = \sqrt[4]{\frac{6}{5}}[/tex]
t = 10
[tex]A = 3000b^t[/tex]
[tex]A = 3000\sqrt[4]{\frac{6}{5}}^{10} = 4732.3228 = 4732 [/tex]
Answer = 4732