Respuesta :
[tex]\bf \textit{Sum to Product Identities}
\\ \quad \\
sin({{ \alpha}})+sin({{ \beta}})=2sin\left(\cfrac{{{ \alpha}}+{{ \beta}}}{2}\right)cos\left(\cfrac{{{ \alpha}}-{{ \beta}}}{2}\right)
\\ \quad \\\\
\boxed{sin({{ \alpha}})-sin({{ \beta}})=2cos\left(\cfrac{{{ \alpha}}+{{ \beta}}}{2}\right)sin\left(\cfrac{{{ \alpha}}-{{ \beta}}}{2}\right)}
\\ \quad \\\\\
cos({{ \alpha}})+cos({{ \beta}})=2cos\left(\cfrac{{{ \alpha}}+{{ \beta}}}{2}\right)cos\left(\cfrac{{{ \alpha}}-{{ \beta}}}{2}\right)
\\ \quad \\
[/tex]
[tex]\bf cos({{ \alpha}})-cos({{ \beta}})=-2sin\left(\cfrac{{{ \alpha}}+{{ \beta}}}{2}\right)sin\left(\cfrac{{{ \alpha}}-{{ \beta}}}{2}\right)\\\\ -------------------------------\\\\ sin(2x)-sin(x)\implies 2cos\left( \cfrac{2x+x}{2} \right)sin\left( \cfrac{2x-x}{2} \right) \\\\\\ 2cos\left( \cfrac{3x}{2} \right)sin\left( \cfrac{x}{2} \right)[/tex]
[tex]\bf cos({{ \alpha}})-cos({{ \beta}})=-2sin\left(\cfrac{{{ \alpha}}+{{ \beta}}}{2}\right)sin\left(\cfrac{{{ \alpha}}-{{ \beta}}}{2}\right)\\\\ -------------------------------\\\\ sin(2x)-sin(x)\implies 2cos\left( \cfrac{2x+x}{2} \right)sin\left( \cfrac{2x-x}{2} \right) \\\\\\ 2cos\left( \cfrac{3x}{2} \right)sin\left( \cfrac{x}{2} \right)[/tex]
The expression sin(2x) − sinx is equivalent to 2sin (3x/2) sin(x/2) therefore option (D) is correct.
Recall the formula of sine
[tex]\sin x-\sin y=2 \sin (\frac{x+y}{2}) \sin (\frac{x-y}{2})[/tex]
How to find the equivalent expression?
The given expression is sin (2x) − sin x.
Apply the formula
[tex]\sin (2x) - \sin x =2 \sin (\frac{2x+x}{2}) \sin (\frac{2x-x}{2})[/tex]
[tex]=2 \sin (\frac{3x}{2}) \sin (\frac{x}{2})[/tex]
Hence the expression is equivalent to 2sin (3x/2) sin(x/2)
brainly.com/question/8120556
Learn more about trigonometric expressions here- brainly.com/question/11234923
#SPJ2