Respuesta :
[tex]n^3\le3n^2\iff n^3-3n^2\le0\iff n^2(n-3)\le0[/tex]
The quantity on the left hand side will be positive for any [tex]n>3[/tex], so suppose consider [tex]n=4[/tex].
Now,
[tex]4^3=64[/tex]
but
[tex]3(4)^2=48[/tex]
and [tex]64\not\le48[/tex]
The quantity on the left hand side will be positive for any [tex]n>3[/tex], so suppose consider [tex]n=4[/tex].
Now,
[tex]4^3=64[/tex]
but
[tex]3(4)^2=48[/tex]
and [tex]64\not\le48[/tex]
[tex]n^3-3n^2\ \leq \ 0[/tex] [tex]\text{Move all terms to one side}[/tex]
[tex]n^2(n-3) \leq0[/tex] [tex]\text{Factor out the common term} \ {n}^{2}[/tex]
[tex]n(n-3) = 0 [/tex] [tex]\text{when n=0,3}[/tex]
⇒ [tex]\text{From the values of} \ n^2 \text{ above, we have these 3 intervals to test}[/tex]
⇒ [tex]n \leq0[/tex]
⇒ [tex]0 \leq n \leq 3[/tex]
⇒ [tex]n \geq 3[/tex]
⇒ [tex]\text{Pick a test point for each interval}[/tex]
[tex]n^2(n-3) \leq0[/tex] [tex]\text{Factor out the common term} \ {n}^{2}[/tex]
[tex]n(n-3) = 0 [/tex] [tex]\text{when n=0,3}[/tex]
⇒ [tex]\text{From the values of} \ n^2 \text{ above, we have these 3 intervals to test}[/tex]
⇒ [tex]n \leq0[/tex]
⇒ [tex]0 \leq n \leq 3[/tex]
⇒ [tex]n \geq 3[/tex]
⇒ [tex]\text{Pick a test point for each interval}[/tex]
![Ver imagen Аноним](https://us-static.z-dn.net/files/dfe/1e9fbef84402ce5377d8a917dc282b39.png)