Answer: [tex]\angle WXY=125^{\circ}[/tex]
Explanation: Since, a kite has one pair of congruent angles and its main diagonal bisects its opposite angles.
Therefore, According to the given figure,
[tex]\angle WXY=\angle WZY[/tex]
And, WY is the main diagonal which bisects angles ZWX and XYZ.
So, [tex]\angle ZWX =2\times \angle ZWY= 2\times 43^{\circ}=86^{\circ}[/tex]
And, [tex]\angle XYZ =2\times \angle XYW= 2\times 12^{\circ}=24^{\circ}[/tex]
Since, Sum of all angles of a quadrilateral is equal to [tex]360^{\circ}[/tex]
Therefore, [tex]\angle WXY+\angle WZY+\angle XYZ+\angle ZWX=360^{\circ}[/tex]
⇒[tex]2\times \angle WXY+ 86^{\circ}+24^{\circ}=360^{\circ}[/tex]
⇒[tex]2\times \angle WXY=360^{\circ}-110^{\circ}=250{\circ}[/tex]
⇒ [tex]\angle WXY=125^{\circ}[/tex]