What values are needed to make each expression a perfect square trinomial?
x2 + 4x +_____________
x2 – 10x + ____________

Respuesta :

Answer:

Part a) [tex]x^{2}+4x+4[/tex]

Part b) [tex]x^{2}-10x+25[/tex]

Step-by-step explanation:

we know that

A perfect square trinomial is equal to

[tex](x+a)^{2} =x^{2}+2ax+a^{2}[/tex]

Part a) we have

[tex]x^{2}+4x[/tex]

Compare with the formula of a perfect square trinomial

[tex]x^{2}+4x=x^{2}+2ax+a^{2}[/tex]

so

[tex]4x=2ax[/tex]

[tex]4=2a[/tex]

[tex]a=2[/tex]

therefore

[tex](x+a)^{2} =(x+2)^{2}=x^{2}+4x+4[/tex]

Part b) we have

[tex]x^{2}-10x[/tex]

Compare with the formula of a perfect square trinomial

[tex]x^{2}-10x=x^{2}+2ax+a^{2}[/tex]

so

[tex]-10x=2ax[/tex]

[tex]-10=2a[/tex]

[tex]a=-5[/tex]

therefore

[tex](x+a)^{2} =(x-5)^{2}=x^{2}-10x+25[/tex]

The values are needed to make each expression a perfect square trinomial x^2 + 4x + 4 and x^2 – 10x + 25.

What is a perfect square?

A perfect square is a number system that can be expressed as the

square of a given number from the same system.

A. [tex]x^{2} +4x+4[/tex]

A perfect square trinomial is

[tex](x+a)^2 = x^2 + 2ax + a^2[/tex]

Compare with the formula of a perfect square trinomial

4x = 2ax

4 = 2a

a = 2

Therefore, [tex](x+a)^2 = (x+2)^2 = x^{2} +4x+4[/tex]

B. [tex]x^{2} -10x + 25[/tex]

A perfect square trinomial is

[tex](x+a)^2 = x^2 + 2ax + a^2[/tex]

Compare with the formula of a perfect square trinomial

-10x = 2ax

-10 = 2a

a = -5

Therefore, [tex](x+a)^2 = (x-5)^2 = x^{2} -10x+25[/tex].

Learn more about a perfect square;

https://brainly.com/question/385286

#SPJ3

ACCESS MORE