Respuesta :
ANSWER
The equation in point-slope form is
[tex]y + 1 = \frac{8}{9} (x + 4).[/tex]
EXPLANATION
The equation of a line in point slope form is given by,
[tex]y-y_1=m(x-x_1)[/tex]
where
[tex]m[/tex]
is the slope and
[tex](x_1,y_1)[/tex]
is any given point on the line.
Let us now find the slope using the point,
[tex](-4,-1) \: and \: (5,7)[/tex]
We apply the slope formula,
[tex]m=\frac{y_2-y_1}{x_2-x_1} [/tex]
This implies that,
[tex]m = \frac{7 - - 1}{5 - - 4} [/tex]
[tex]m = \frac{7 + 1}{5 + 4} [/tex]
[tex]m = \frac{8}{9} [/tex]
The equation is now given by,
[tex]y - - 1 = \frac{8}{9} (x - - 4)[/tex]
Or
[tex]y + 1 = \frac{8}{9} (x + 4)[/tex]
The correct answer is D
The equation in point-slope form is
[tex]y + 1 = \frac{8}{9} (x + 4).[/tex]
EXPLANATION
The equation of a line in point slope form is given by,
[tex]y-y_1=m(x-x_1)[/tex]
where
[tex]m[/tex]
is the slope and
[tex](x_1,y_1)[/tex]
is any given point on the line.
Let us now find the slope using the point,
[tex](-4,-1) \: and \: (5,7)[/tex]
We apply the slope formula,
[tex]m=\frac{y_2-y_1}{x_2-x_1} [/tex]
This implies that,
[tex]m = \frac{7 - - 1}{5 - - 4} [/tex]
[tex]m = \frac{7 + 1}{5 + 4} [/tex]
[tex]m = \frac{8}{9} [/tex]
The equation is now given by,
[tex]y - - 1 = \frac{8}{9} (x - - 4)[/tex]
Or
[tex]y + 1 = \frac{8}{9} (x + 4)[/tex]
The correct answer is D