Respuesta :
The diameter of the model would be 63.1 m.
The diameter of a hydrogen atom is 1.06 × 10⁻¹⁰ m.
The diameter of a proton is 1.68 × 10⁻¹⁵ m.
The ratio of their diameters is [tex] \frac{1.06\times 10^{-10} m}{1.68 \times 10^{-15} m} [/tex] = 6.31 × 10⁴
So the diameter of your model would be 6.31 × 10⁴ mm
.
6.31 × 10⁴ mm × [tex] \frac{1 m}{1000 mm} [/tex] = 63.1 m
The diameter of a hydrogen atom is 1.06 × 10⁻¹⁰ m.
The diameter of a proton is 1.68 × 10⁻¹⁵ m.
The ratio of their diameters is [tex] \frac{1.06\times 10^{-10} m}{1.68 \times 10^{-15} m} [/tex] = 6.31 × 10⁴
So the diameter of your model would be 6.31 × 10⁴ mm
.
6.31 × 10⁴ mm × [tex] \frac{1 m}{1000 mm} [/tex] = 63.1 m
Answer:
The diameter of the entire model is 41,680 mm
Explanation:
Let the radius of the model be = x
Nuclear radius of the model = y = 0.5 mm *(radius = 2 × diameter)
[tex]\frac{y}{x}=\frac{0.5 mm}{x}[/tex]...(1)
[tex]R=r_{o}\times A^{1/3}[/tex]
[tex]R[/tex] = radius of the nucleus
[tex]r_o[/tex] = r = 1.25 fm = [tex]1.25\times 10^{-15} m[/tex]
(Constant value for all nuclei)
A = Number of nucleons or atomic mass number
Radius of hydrogen nucleus =
[tex]R=1.25\times 10^{-15} m\times 1^{1/3}=1.25\times 10^{-15} m[/tex]
Radius of the nth shell: [tex]r_n[/tex]
[tex]r_n=\frac{52.9\times n^2}{Z} pm[/tex]
[tex]r_n[/tex] = radius of the nth shell
Z = Atomic number
Radius of hydrogen atom :[tex]r_h[/tex]
Z =1, n = 1 (1 electron in first shell)
[tex]r_h=r_1=\frac{52.9\times 1^2}{1} pm=52.1 pm[/tex]
1 pm = [tex]10^{-12} m[/tex]
[tex]r_h=5.21\times 10^{-11} m[/tex]
Ratio of R to [tex]r_h[/tex] :
[tex]\frac{R}{r_h}=\frac{1.25\times 10^{-15} m}{5.21\times 10^{-11} m}[/tex]..(2)
(1)=(2)
[tex]\frac{0.5 mm}{x}=\frac{1.25\times 10^{-15} m}{5.21\times 10^{-11} m}[/tex]
[tex]x=20,840 mm[/tex]
Diameter of the model = 2 × 20,840 mm = 41,680 mm