The mass of ore required is 21 700 t.
r = 750 cm
V = [tex] \frac{4}{3} \pi r^{3} [/tex] = [tex] \frac{4}{3} \pi (750 cm)^{3} [/tex] = 1.767 × 10⁹ cm³
The density of lead is 11.34 g/cm³.
So mass of lead sphere = 1.767 × 10⁹ cm³ × [tex] \frac{11.34 g}{1 cm^{3} } [/tex] = 2.004 ×10¹⁰ g
2.004 ×10¹⁰ g × [tex] \frac{1 kg}{1000 g} [/tex] = 2.004 × 10⁷ kg
2.004 × 10⁷ kg × [tex] \frac{1 t}{1000 kg} [/tex] = 2.004 × 10⁴ t
92.5% efficiency means 92.5 t Pb per 100 t of ore.
Mass of ore = 2.004 × 10⁴ t Pb ×[tex] \frac{100 tore}{92.5 t Pb} [/tex] = 2.17 × 10⁴ t ore = 21 700 t ore