Respuesta :

Space

Answer:

[tex]\displaystyle \iiint_D {z \big( x^2 + y^2 \big)^\big{\frac{-1}{2}}} \, dx \, dy \, dz = \frac{32 \pi}{5}[/tex]

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:
[tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Multivariable Calculus

Cylindrical Coordinate Conversions:

  • [tex]\displaystyle x = r \cos \theta[/tex]
  • [tex]\displaystyle y = r \sin \theta[/tex]
  • [tex]\displaystyle z = z[/tex]
  • [tex]\displaystyle r^2 = x^2 + y^2[/tex]
  • [tex]\displaystyle \tan \theta = \frac{y}{x}[/tex]

Volume Formula [Cylindrical Coordinates]:
[tex]\displaystyle V = \iiint_T \, dV \rightarrow V = \iiint_T {r} \, dz \, dr \, d\theta[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle \text{Region} \ D \left \{ {{2z = x^2 + y^2} \atop {z = 2}} \right.[/tex]

[tex]\displaystyle \iiint_D {z \big( x^2 + y^2 \big)^\big{\frac{-1}{2}}} \, dx \, dy \, dz[/tex]

Step 2: Find Volume Pt. 1

Find θ bound.

  1. [Surface] Substitute in plane z:
    [tex]\displaystyle 2(2) = x^2 + y^2[/tex]
  2. Simplify:
    [tex]\displaystyle x^2 + y^2 = 4[/tex]
  3. [See 2nd Attachment] Graph
  4. [Graph] Identify limits [Unit Circle]:
    [tex]\displaystyle 0 \leq \theta \leq 2 \pi[/tex]

Find r bound.

  1. [Surface] Substitute in plane z:
    [tex]\displaystyle 2(2) = x^2 + y^2[/tex]
  2. Substitute in cylindrical conversions:
    [tex]\displaystyle 2(2) = r^2[/tex]
  3. Simplify:
    [tex]\displaystyle r = \pm 2[/tex]
  4. [r] Identify:
    [tex]\displaystyle r = 2[/tex]
  5. Define limits:
    [tex]\displaystyle 0 \leq r \leq 2[/tex]

Find z bound.

  1. [Surface] Substitute in cylindrical conversions:
    [tex]\displaystyle 2z = r^2[/tex]
  2. Rewrite:
    [tex]\displaystyle z =\frac{r^2}{2}[/tex]
  3. Define limits:
    [tex]\displaystyle \frac{r^2}{2} \leq z \leq 2[/tex]

Step 3: Find Volume Pt. 2

  1. [Integrals] Substitute in cylindrical conversions:
    [tex]\displaystyle \iiint_D {z \big( x^2 + y^2 \big)^\big{\frac{-1}{2}}} \, dx \, dy \, dz = \iiint_D {z \big( r^2 \big)^\big{\frac{-1}{2}}} \, dx \, dy \, dz[/tex]
  2. [Integrals] Simplify:
    [tex]\displaystyle \iiint_D {z \big( x^2 + y^2 \big)^\big{\frac{-1}{2}}} \, dx \, dy \, dz = \iiint_D {\frac{z}{r}} \, dx \, dy \, dz[/tex]
  3. [Integrals] Convert [Volume Formula - Cylindrical Coordinates]:
    [tex]\displaystyle \iiint_D {z \big( x^2 + y^2 \big)^\big{\frac{-1}{2}}} \, dx \, dy \, dz = \iiint_T {\frac{zr}{r}} \, dz \, dr \, d\theta[/tex]
  4. [Integrals] Simplify:
    [tex]\displaystyle \iiint_D {z \big( x^2 + y^2 \big)^\big{\frac{-1}{2}}} \, dx \, dy \, dz = \iiint_T {z} \, dz \, dr \, d\theta[/tex]
  5. [Integrals] Substitute in region T:
    [tex]\displaystyle \iiint_D {z \big( x^2 + y^2 \big)^\big{\frac{-1}{2}}} \, dx \, dy \, dz = \int\limits^{2 \pi}_0 \int\limits^2_0 \int\limits^2_{\frac{r^2}{2}} {z} \, dz \, dr \, d\theta[/tex]
  6. [dz Integral] Integrate [Integration Rules and Properties]:
    [tex]\displaystyle \iiint_D {z \big( x^2 + y^2 \big)^\big{\frac{-1}{2}}} \, dx \, dy \, dz = \int\limits^{2 \pi}_0 \int\limits^2_0 {\frac{z^2}{2} \bigg| \limits^{z = 2}_{z = \frac{r^2}{2}}} \, dr \, d\theta[/tex]
  7. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    [tex]\displaystyle \iiint_D {z \big( x^2 + y^2 \big)^\big{\frac{-1}{2}}} \, dx \, dy \, dz = \int\limits^{2 \pi}_0 \int\limits^2_0 {\bigg( 2 - \frac{r^4}{8} \bigg)} \, dr \, d\theta[/tex]
  8. [dr Integral] Integrate [Integration Rules and Properties]:
    [tex]\displaystyle \iiint_D {z \big( x^2 + y^2 \big)^\big{\frac{-1}{2}}} \, dx \, dy \, dz = \int\limits^{2 \pi}_0 {\bigg( 2r - \frac{r^5}{40} \bigg) \bigg| \limits^{r = 2}_{r = 0}} \, d\theta[/tex]
  9. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    [tex]\displaystyle \iiint_D {z \big( x^2 + y^2 \big)^\big{\frac{-1}{2}}} \, dx \, dy \, dz = \int\limits^{2 \pi}_0 {\frac{16}{5}} \, d\theta[/tex]
  10. [ Integral] Integrate [Integration Rules and Properties]:
    [tex]\displaystyle \iiint_D {z \big( x^2 + y^2 \big)^\big{\frac{-1}{2}}} \, dx \, dy \, dz = \frac{16}{5} \theta \bigg| \limits^{\theta = 2 \pi}_{\theta = 0}[/tex]
  11. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    [tex]\displaystyle \iiint_D {z \big( x^2 + y^2 \big)^\big{\frac{-1}{2}}} \, dx \, dy \, dz = \frac{32 \pi}{5}[/tex]

∴ the integral bound by region D is equal to  [tex]\displaystyle \bold{\frac{32 \pi}{5}}[/tex].

---

Learn more about cylindrical coordinates: https://brainly.com/question/24004264

Learn more about multivariable calculus: https://brainly.com/question/17203772

---

Topic: Multivariable Calculus

Unit: Triple Integrals Applications

Ver imagen Space
Ver imagen Space