Respuesta :
volumes of revolution are so fun
lets say you have 2 functions f(x) and g(x) where they intersect at c and d where c<d, and f(x) is on top of g(x) (like for a value r where c<r<d, f(r)>g(r)), the volume is
[tex] \pi \int\limits^d_c {f(x)^2-g(x)^2} \, dx [/tex]
ok, so find the intersection points of [tex]y=9x^3[/tex] and y=9
9=9x^3
1=x^3
at x=1
so then the area will be from x=0 to x=1
which ones's higher?
try x=0.5
at x=0.5, 9(0.5)^3<9
so the y=9 is on top
therfor
limits are from 0 to 1
higher one is y=9
bottom function is y=9x^3
so the volume is
[tex] \pi \int\limits^1_0 {(9)^2-(9x^3)^2} \, dx =[/tex]
[tex] \pi \int\limits^1_0 {81-81x^6} \, dx =[/tex]
we can factor out the 81
[tex] \pi \int\limits^1_0 {81(1-x^6)} \, dx =[/tex]
factor out the constant
[tex] 81 \pi \int\limits^1_0 {1-x^6} \, dx =[/tex]
integrate
[tex]81 \pi [x-\frac{1}{7}x^7]^1_0=[/tex]
[tex]81 \pi [(1-\frac{1}{7}(1)^7)-(0-\frac{1}{7}(0)^7)]=[/tex]
[tex]81 \pi (1-\frac{1}{7}-0)=[/tex]
[tex]81 \pi -\frac{81}{7}[/tex]
the area is [tex]81 \pi-\frac{81}{7}[/tex] square units
lets say you have 2 functions f(x) and g(x) where they intersect at c and d where c<d, and f(x) is on top of g(x) (like for a value r where c<r<d, f(r)>g(r)), the volume is
[tex] \pi \int\limits^d_c {f(x)^2-g(x)^2} \, dx [/tex]
ok, so find the intersection points of [tex]y=9x^3[/tex] and y=9
9=9x^3
1=x^3
at x=1
so then the area will be from x=0 to x=1
which ones's higher?
try x=0.5
at x=0.5, 9(0.5)^3<9
so the y=9 is on top
therfor
limits are from 0 to 1
higher one is y=9
bottom function is y=9x^3
so the volume is
[tex] \pi \int\limits^1_0 {(9)^2-(9x^3)^2} \, dx =[/tex]
[tex] \pi \int\limits^1_0 {81-81x^6} \, dx =[/tex]
we can factor out the 81
[tex] \pi \int\limits^1_0 {81(1-x^6)} \, dx =[/tex]
factor out the constant
[tex] 81 \pi \int\limits^1_0 {1-x^6} \, dx =[/tex]
integrate
[tex]81 \pi [x-\frac{1}{7}x^7]^1_0=[/tex]
[tex]81 \pi [(1-\frac{1}{7}(1)^7)-(0-\frac{1}{7}(0)^7)]=[/tex]
[tex]81 \pi (1-\frac{1}{7}-0)=[/tex]
[tex]81 \pi -\frac{81}{7}[/tex]
the area is [tex]81 \pi-\frac{81}{7}[/tex] square units
The volume of the solid generated is 218.01 cubic units
The curves are given as:
[tex]y = 9x^3[/tex], y = 9
[tex]x = 0[/tex]
Start by calculating x at [tex]y = 9x^3[/tex]
Substitute 9 for y
[tex]9x^3 = 9[/tex]
Divide both sides by 9
[tex]x^3 = 1[/tex]
Take the cube roots of both sides
[tex]x = 1[/tex]
So, the equation of the volume is then represented as:
[tex]V = \pi \int\limits^a_b {9^2 - (9x^3)^2} \, dx[/tex]
[tex]V = \pi\int\limits^a_b {81 - 81x^6} \, dx[/tex]
Where [a,b] = [1,0]
So, we have:
[tex]V = \pi\int\limits^1_0 {81 - 81x^6} \, dx[/tex]
Factor out 81
[tex]V = 81\pi\int\limits^1_0 {1 - x^6} \, dx[/tex]
Integrate
[tex]V = 81\pi [x - \frac 17x^7]|\limits^1_0[/tex]
Expand
[tex]V = 81\pi ([1 - \frac 17(1)^7] - [0 - \frac 17(0)^7] )[/tex]
[tex]V = 81\pi ([1 - \frac 17] )[/tex]
[tex]V = 81\pi * \frac 67[/tex]
So, we have:
[tex]V = 81 * 3.14 * \frac 67[/tex]
[tex]V = 218.01[/tex]
Hence, the volume of the solid generated is 218.01 cubic units
Read more about volumes at:
https://brainly.com/question/10171109