Respuesta :
[tex]Acceleration=\frac { Final\quad Velocity\quad -\quad Initial\quad Velocity }{ Time } \\ [/tex]
Therefore:
[tex]Acceleration=\frac { 11.1\quad m/s\quad -\quad 0\quad m/s }{ 9\quad seconds } \\ \\ =\frac { 11.1\quad m/s }{ 9\quad seconds } \\ \\ =1.23\quad m/{ s }^{ 2 }\quad (2\quad decimal\quad places)[/tex]
As the runner was travelling for 9 seconds, he covered a distance of 99.9 metres. 9 seconds x 9 seconds = 81 seconds squared, and the runner covers roughly 1.23 metres in distance every second squared.
Therefore:
[tex]Acceleration=\frac { 11.1\quad m/s\quad -\quad 0\quad m/s }{ 9\quad seconds } \\ \\ =\frac { 11.1\quad m/s }{ 9\quad seconds } \\ \\ =1.23\quad m/{ s }^{ 2 }\quad (2\quad decimal\quad places)[/tex]
As the runner was travelling for 9 seconds, he covered a distance of 99.9 metres. 9 seconds x 9 seconds = 81 seconds squared, and the runner covers roughly 1.23 metres in distance every second squared.
Explanation:
Acceleration=
Time
FinalVelocity−InitialVelocity
Therefore:
\begin{gathered}Acceleration=\frac { 11.1\quad m/s\quad -\quad 0\quad m/s }{ 9\quad seconds } \\ \\ =\frac { 11.1\quad m/s }{ 9\quad seconds } \\ \\ =1.23\quad m/{ s }^{ 2 }\quad (2\quad decimal\quad places)\end{gathered}
Acceleration=
9seconds
11.1m/s−0m/s
=
9seconds
11.1m/s
=1.23m/s
2
(2decimalplaces)
As the runner was travelling for 9 seconds, he covered a distance of 99.9 metres. 9 seconds x 9 seconds = 81 seconds squared, and the runner covers roughly 1.23 metres in distance every second squared.