Respuesta :
Using exponential growth, we get P1=P0*e^rt, where P1 is the result population, P0 is the initial population, r is the rate, and t is time. So:
51=48*e^11r
1.0625=e^11r
ln 1.0625=ln e^11r=11r ln e=11r
r=ln 1.0625/11=0.0055
Then
51*e^0.00551132925603953114369146654913*(2008-2002)=51*1.0336207977813425465939939376231=52.71466 million as the population
☺☺☺☺
51=48*e^11r
1.0625=e^11r
ln 1.0625=ln e^11r=11r ln e=11r
r=ln 1.0625/11=0.0055
Then
51*e^0.00551132925603953114369146654913*(2008-2002)=51*1.0336207977813425465939939376231=52.71466 million as the population
☺☺☺☺
Answer:
53 Million
Step-by-step explanation:
In 1991: t = 0 and A = 45 million
In 2002: t = 11 and p = 51 Million
You're Solving For k:
P = [tex]Ae^{kt}[/tex] In(1.0625) - In( [tex]e^{k*11}[/tex] )
51 = [tex]48^{k*11}[/tex] 0.0606 = k * 11
1.0625 = [tex]e^{k*11}[/tex] 0.0055 ≈ k
In 2008: t = 17
P = [tex]Ae^{kt}[/tex]
P = [tex]48e^{0.0055*17}[/tex]
P = [tex]48e^{0.094}[/tex]
P = 48*1.0986
P ≈ 52.71466 million as the population
P ≈ 53 Million If Rounded