Respuesta :
We can model the trip of the clock hand as shown in the picture below:
The clock hand is of the same length, '[tex]x[/tex]' and it forms a right-angle triangle from 1:15 to 1:30
We can use the Pythagoras theorem to find the length of the minute hand
[tex]x^2+x^2=15^2[/tex]
[tex]2x^2=225[/tex]
[tex]x^2= \frac{225}{2} [/tex]
[tex]x^2=112.5[/tex]
[tex]x= \sqrt{112.5} [/tex]
[tex]x=10.6[/tex]
Answer : 10.6 (to the nearest tenth)
The clock hand is of the same length, '[tex]x[/tex]' and it forms a right-angle triangle from 1:15 to 1:30
We can use the Pythagoras theorem to find the length of the minute hand
[tex]x^2+x^2=15^2[/tex]
[tex]2x^2=225[/tex]
[tex]x^2= \frac{225}{2} [/tex]
[tex]x^2=112.5[/tex]
[tex]x= \sqrt{112.5} [/tex]
[tex]x=10.6[/tex]
Answer : 10.6 (to the nearest tenth)

Answer:
The length of minute hand is 9.5 cm
Step-by-step explanation:
We are given the minute hand move from 1:15 to 1:30
Time for 1:30 to 1:30 = 15 minutes
Tip of minute hand move 15 cm in 15 minutes.
In 60 minutes = 360°
In 1 minute = 6°
In 15 minutes = 90°
Formula: [tex]\theta=\dfrac{L}{r}[/tex]
[tex]\theta=90^\circ[/tex]
Now we change [tex]\theta=90^\circ[/tex] into radian
[tex]Radian=\dfrac{\pi}{180^\circ}\times 90^\circ=\dfrac{\pi}{2}[/tex]
L=15 cm
R = Length of minute hand.
[tex]\dfrac{\pi}{2}=\dfrac{15}{R}[/tex]
[tex]R=\dfrac{30}{\pi}\approx 9.5[/tex]
Hence, The length of minute hand is 9.5 cm