Respuesta :

Answer:

p(11) = 626.

Step-by-step explanation:

Given  : p(x) = 5(x²+1)+16.

To find :  what is the value of p(11).

Solution : We have given  p(x) = 5(x²+1)+16.

For x = 11.

p(11) = 5((11)²+1)+16.

p(11) = 5 ( 121 + 1 ) +16.

p(11) = 5 (122) + 16.

p(11) =  610 + 16.

p(11) = 626.

Therefore,  p(11) = 626.

The value of p(11) is 626

The function is given as:

[tex]p(x) =5(x^2 + 1) + 16[/tex]

To calculate p(11), we start by substituting 11 for x in p(x).

So, we have:

[tex]p(11) =5(11^2 + 1) + 16[/tex]

Evaluate the exponent

[tex]p(11) =5(121 + 1) + 16[/tex]

Open the bracket

[tex]p(11) =5 \times 122 + 16[/tex]

Evaluate the product

[tex]p(11) =610+ 16[/tex]

Add 610 and 16

[tex]p(11) =626[/tex]

Hence, the value of p(11) is 626

Read more about functions and expressions at:

https://brainly.com/question/10881257