Respuesta :
Answer:
p(11) = 626.
Step-by-step explanation:
Given : p(x) = 5(x²+1)+16.
To find : what is the value of p(11).
Solution : We have given p(x) = 5(x²+1)+16.
For x = 11.
p(11) = 5((11)²+1)+16.
p(11) = 5 ( 121 + 1 ) +16.
p(11) = 5 (122) + 16.
p(11) = 610 + 16.
p(11) = 626.
Therefore, p(11) = 626.
The value of p(11) is 626
The function is given as:
[tex]p(x) =5(x^2 + 1) + 16[/tex]
To calculate p(11), we start by substituting 11 for x in p(x).
So, we have:
[tex]p(11) =5(11^2 + 1) + 16[/tex]
Evaluate the exponent
[tex]p(11) =5(121 + 1) + 16[/tex]
Open the bracket
[tex]p(11) =5 \times 122 + 16[/tex]
Evaluate the product
[tex]p(11) =610+ 16[/tex]
Add 610 and 16
[tex]p(11) =626[/tex]
Hence, the value of p(11) is 626
Read more about functions and expressions at:
https://brainly.com/question/10881257