Respuesta :
[tex]18-2x=4x[/tex] ⇒ Given
[tex]18-2x-4x=4x-4x[/tex] ⇒ Addition property of equality
[tex]18 - 6x = 0[/tex] ⇒ Combine like terms [-2x-4x = -6x]
[tex]18-6x+6x=0+6x[/tex] ⇒ Addition property of equality
[tex]18=6x[/tex] ⇒ Distributive property
[tex] \frac{18}{6}= \frac{6x}{6} [/tex] ⇒ Division property of equality
[tex]x=3[/tex] ⇒ Answer
[tex]18-2x-4x=4x-4x[/tex] ⇒ Addition property of equality
[tex]18 - 6x = 0[/tex] ⇒ Combine like terms [-2x-4x = -6x]
[tex]18-6x+6x=0+6x[/tex] ⇒ Addition property of equality
[tex]18=6x[/tex] ⇒ Distributive property
[tex] \frac{18}{6}= \frac{6x}{6} [/tex] ⇒ Division property of equality
[tex]x=3[/tex] ⇒ Answer
Solution of the equation is [tex]x=3[/tex] by writing the reason for each step in the solution of the equation:
Explanation:
Given: Linear equation is [tex]18-2x=4x[/tex]
Solving the equation and writing the reason for each step in the solution of the equation:
⇒ [tex]18-2x=4x[/tex] (Given )
⇒ [tex]18-2x-4x=4x-4x[/tex] (Addition property of equality)
⇒ [tex]18-6x=0[/tex] (Combine like terms [tex][-2x-4x = -6x][/tex])
⇒ [tex]18-6x+6x=0+6x[/tex] (Addition property of equality)
⇒ [tex]18=6x[/tex] (Distributive property)
⇒ [tex]\frac{18}{6}=\frac{6x}{6}[/tex] (Division property of equality)
⇒ [tex]3=x[/tex] (Answer)
Therefore, the solution of the equation is [tex]x=3[/tex].
Learn more about Linear equation in one variable and how to solve it here:
https://brainly.com/question/24794429?referrer=searchResults