we know that
a) By corresponding angles
m∠6=m∠2
b) By vertical angles
m∠6=[tex](5x+9)\°[/tex]
so
m∠2=[tex](5x+9)\°[/tex] --------> equation [tex]1[/tex]
c) By supplementary angles
[tex](13x+9)\°[/tex]+m∠2=[tex]180\°[/tex] --------> equation [tex]2[/tex]
substitute equation [tex]1[/tex] in equation [tex]2[/tex]
[tex](13x+9)\°+(5x+9)\°=180\°[/tex]
[tex](18x+18)\°=180\°[/tex]
[tex]18x=180-18[/tex]
[tex]x=9\°[/tex]
Find m∠6
m∠6=[tex](5*9+9)\°[/tex]
m∠6=[tex]54\°[/tex]
therefore
the answer is
the measure of the angle 6 is [tex]54\°[/tex]