Respuesta :
E = hc / λ
Rearranging to get the wavelength (lambda):λ = hc / E
λ = 6.63x10^-34 Js x 3.00x10^8 m/s / 5.69x10^-17J
λ = 3.50x10^-9 m
3.5x10^-9 m x (100 cm / 1 m) x (1x10^8 Å / 1 cm) = 35 Å
Answer: The correct answer is [tex]\lambda= 35\AA [/tex].
Explanation:
The expression for the relation between the energy of the wave and the wavelength is as follows;
[tex]E=\frac{hc}{\lambda }[/tex]
Here, E is the energy of the wave, h is Planck's constant, c is the speed of the light and [tex]\lambda [/tex] is the wavelength of the wave.
It is given in the problem that the energy of the photon is [tex]5.86\times 10^{-17} J[/tex].
Put c= [tex]3\times 10^{8} meter per second[/tex], [tex]h=6.63\times 10^{-34} kg square meter second[/tex] and
[tex]5.69\times 10^{-17}=\frac{(6.63\times 10^{-34})(3\times 10^{8})}{\lambda }[/tex]
[tex]\lambda= 3.5\times 10^{-9} [/tex]
Convert the value of the wavelength into angstrom.
[tex]1 \AA = 10^{-10} m[/tex]
[tex]\lambda= \frac{3.5\times 10^{-9}m}{10^{-10}\AA }[/tex]
[tex]\lambda= 35\AA [/tex]
Therefore, the wavelength of a photon is [tex]\lambda= 35\AA [/tex].