The equation that relates the spring extension to the force applied to it is linear:
[tex]F=k*\Delta x[/tex]
where [tex]k[/tex] is the spring constant.
Hence [tex]k= \frac{F}{\Delta x}= \frac{3030}{(15.15-10.10)}= \frac{3030}{5.05}=600 ( \frac{N}{m} ) [/tex]
because [tex]1 m = 100 cm[/tex]
The work done when stretching the spring is
[tex]W= -\int\limits^d_0 {F(x)} \, dx= -\int\limits^d_0 {(kx)} \, dx = -\frac{kx^2}{2}= \frac{600*0.77^2}{2}= -177.87 (Joules) [/tex]
The work is negative because we stretch the spring while the string oposes to this stretching.