The vertex form of the equation of a parabola is y=(x-5)2+16.What is the standard form of the equation?
a. y=x2-10x+41
b. y=x2+10x+16
c. y=x2+x+8
d. y=3x2-10x+41

Respuesta :

naǫ
[tex]y=(x-5)^2+16 \\ y=x^2-2 \times x \times 5+5^2+16 \\ y=x^2-10x+25+16 \\ y=x^2-10x+41[/tex]

The answer is A.

Answer:

Option (A) is correct.

The standard form of the equation of parabola  [tex]y=(x-5)^2+16[/tex]  is [tex]y=x^2-10x+41[/tex]

Step-by-step explanation:

Given : The equation of a parabola is [tex]y=(x-5)^2+16[/tex]

We have to find the standard form of the equation of parabola

Consider the equation of a parabola is [tex]y=(x-5)^2+16[/tex]

Applying algebraic identity [tex](a-b)^2=a^2+b^2-2ab[/tex]

We have, a= x and b = 5

[tex](x-5)^2=x^2+5^2-2\cdot x\cdot 5[/tex]

Simplify, we have,

[tex](x-5)^2=x^2-10x+25[/tex]

Substitue, we have,

[tex]y=x^2-10x+25+16[/tex]

Simplify, we have,

[tex]y=x^2-10x+41[/tex]

Thus, The standard form of the equation of parabola  [tex]y=(x-5)^2+16[/tex]  is [tex]y=x^2-10x+41[/tex]