Respuesta :
[tex]y=(x-5)^2+16 \\
y=x^2-2 \times x \times 5+5^2+16 \\
y=x^2-10x+25+16 \\
y=x^2-10x+41[/tex]
The answer is A.
The answer is A.
Answer:
Option (A) is correct.
The standard form of the equation of parabola [tex]y=(x-5)^2+16[/tex] is [tex]y=x^2-10x+41[/tex]
Step-by-step explanation:
Given : The equation of a parabola is [tex]y=(x-5)^2+16[/tex]
We have to find the standard form of the equation of parabola
Consider the equation of a parabola is [tex]y=(x-5)^2+16[/tex]
Applying algebraic identity [tex](a-b)^2=a^2+b^2-2ab[/tex]
We have, a= x and b = 5
[tex](x-5)^2=x^2+5^2-2\cdot x\cdot 5[/tex]
Simplify, we have,
[tex](x-5)^2=x^2-10x+25[/tex]
Substitue, we have,
[tex]y=x^2-10x+25+16[/tex]
Simplify, we have,
[tex]y=x^2-10x+41[/tex]
Thus, The standard form of the equation of parabola [tex]y=(x-5)^2+16[/tex] is [tex]y=x^2-10x+41[/tex]