Given the functions f(x) = x2 + 6x − 1, g(x) = –x2 + 2, and h(x) = 2x2 − 4x + 3, rank them from least to greatest based on their axis of symmetry.
a. f(x), g(x), h(x)
b. h(x), g(x), f(x)
c. g(x), h(x), f(x)
d. h(x), f(x), g(x)

Respuesta :

 You can find an axis of symmmetry of quadratic function by using this formula:

[tex]x=-\dfrac{b}{2a} \\ \\ \hbox{Where function is} \ \ f(x)=ax^2+bx+c \ \ \hbox{assuming} \ \ a\neq 0[/tex]

An axis of f(x):

[tex]x=-\dfrac{6}{2 \cdot 1}=-\dfrac{6}{2}=-3[/tex]

Of g(x):

[tex]x=-\dfrac{0}{2 \cdot (-1)}=\dfrac{0}{2}=0[/tex]

Of h(x):

[tex]x=-\dfrac{-4}{2 \cdot 2}=\dfrac{4}{4}=1[/tex]

At least to greatest you've got  -3, 0,  1   so f(x),  g(x),  h(x). Answer a
ACCESS MORE