[tex]\bf \begin{cases}
-2x-6y&=-26\\
\quad 5x+2y&=13
\end{cases}\stackrel{\textit{determinant of the coefficients}}{D=
\begin{bmatrix}
-2&-6\\5&2
\end{bmatrix}}\implies (-4)-(-30)
\\\\\\
D=-4+30\implies \boxed{D=26}\\\\
-------------------------------\\\\[/tex]
[tex]\bf x=\cfrac{D_x}{D}\implies x=\cfrac{
\begin{bmatrix}
\boxed{-26}&-6\\\\ \boxed{13}&2
\end{bmatrix}}{D}\implies x=\cfrac{(-52)-(-78)}{26}
\\\\\\
x=\cfrac{-52+78}{26}\implies x=\cfrac{26}{26}\implies \boxed{x=1}\\\\
-------------------------------\\\\
y=\cfrac{D_y}{D}\implies y=\cfrac{
\begin{bmatrix}
-2&\boxed{-26}\\\\ 5&\boxed{13}
\end{bmatrix}}{D}\implies y=\cfrac{(-26)-(-130)}{26}
\\\\\\
y=\cfrac{-26+130}{26}\implies y=\cfrac{104}{26}\implies \boxed{y=4}[/tex]