Respuesta :

To find the cotangent you need to know the points of [tex] \frac{5}{6}\pi [/tex], which is [tex] (-\frac{\sqrt{3}}{2}, \frac{1}{2} )[/tex] One sec more is coming. Now that you know the (x, y) point, you can use the function cot, which cot = [tex] \frac{x}{y}[/tex]. So 
cot = [tex]\frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} [/tex]

 cot = [tex]\frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\sqrt{3} [/tex]