Respuesta :
Use the distance formula to find width and length D= sqrt[(x2−x1)^2+(y2−y1)^2], then use the perimeter formula, P=2width+2length
Answer:
The perimeter of rectangle WXYZ is [tex]6\sqrt{13}\approx 21.633[/tex]
Step-by-step explanation:
A rectangle WXYZ, with vertices W(-3,7), X(-5,4), Y(1,0), and Z(3,3).
Distance formula: [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Using distance formula to find length of each side of rectangle.
Length of Side WX
[tex]WX=\sqrt{(-3+5)^2+(7-4)^2}=\sqrt{13}[/tex]
Length of Side XY
[tex]WX=\sqrt{(1+5)^2+(0-4)^2}=2\sqrt{13}[/tex]
Length of Side YZ
[tex]WX=\sqrt{(3-1)^2+(3-0)^2}=\sqrt{13}[/tex]
Length of Side WZ
[tex]WX=\sqrt{(3+3)^2+(7-4)^2}=2\sqrt{13}[/tex]
Perimeter of rectangle = 2(L+B)
[tex]B=WX=YZ=\sqrt{13}[/tex]
[tex]L=XY=WZ=2\sqrt{13}[/tex]
[tex]P=2(\sqrt{13}+2\sqrt{13})[/tex]
[tex]P=6\sqrt{13}[/tex]
Hence, The perimeter of rectangle WXYZ is [tex]6\sqrt{13}\approx 21.633[/tex]