f(x) = √3x
g(x)=√48x
Find (f g)(x). Assume x≥ 0.
A. (f g)(x) = √51x
B. (f g)(x) = 72x
c. (f g)(x) = 12√x
D. (f g)(x)=12x

Respuesta :

Answer:

To find \( (f \circ g)(x) \), we need to first find \( g(x) \) and then plug it into \( f(x) \).

Given:

\[ g(x) = \sqrt{48x} \]

Now, let's find \( f(g(x)) \):

\[ f(g(x)) = f(\sqrt{48x}) = \sqrt{3(\sqrt{48x})} \]

Simplify under the square root:

\[ \sqrt{3(\sqrt{48x})} = \sqrt{3 \cdot \sqrt{16 \cdot 3x}} = \sqrt{3 \cdot 4 \cdot \sqrt{3x}} = \sqrt{12 \cdot \sqrt{3x}} \]

\[ = \sqrt{12} \cdot \sqrt{\sqrt{3x}} = 2\sqrt{3} \cdot \sqrt[4]{3x} \]

So, \( (f \circ g)(x) = 2\sqrt{3} \cdot \sqrt[4]{3x} \).

None of

ACCESS MORE