same as the previous one, and again, we'll use "b" for the boat's speed in still water and "c" for the current's rate.
[tex]\bf \begin{array}{lccclll}
&\stackrel{miles}{distance}&\stackrel{mph}{rate}&\stackrel{hours}{time}\\
&------&------&------\\
Downstream&252&b+c&12\\
Upstream&252&b-c&84
\end{array}
\\\\\\
\begin{cases}
252=12(b+c)\implies \frac{252}{12}=b+c\\
21=b+c\implies 21-b=\boxed{c}\\
-------------\\
252=84(b-c)\implies \frac{252}{84}=b-c\\
3=b-c\\
----------\\
3=b-\left( \boxed{21-b} \right)
\end{cases}
\\\\\\
3=2b-21\implies 21+3=2b\implies \cfrac{24}{2}=b[/tex]
what's the speed of the current? well, 21 - b = c.