Answer:
26.9 m
Explanation:
Method 1: Use work-energy theorem.
Draw a free body diagram of the student on the incline. There are 3 forces:
Weight force mg pulling down,
Normal force N pushing up perpendicular to the incline,
Friction force Nμ pushing down parallel to the incline.
Sum of forces in the perpendicular direction:
∑F = ma
N − mg cos θ = 0
N = mg cos θ
Therefore, friction force is Nμ = (mg cos θ) μ.
Initial elastic energy + initial potential = final potential energy + work done by friction
EE + PE₀ = PE + W
½ kx² + mgh₀ = mgh + Nμd
½ kx² + mgh₀ = mg (d sin θ) + (mg cos θ) μd
½ kx² + mgh₀ = mgd (sin θ + μ cos θ)
d = (½ kx² + mgh₀) / (mg (sin θ + μ cos θ))
Plug in values:
d = (½ (80,000) (0.42)² + (100) (9.8) (10)) / ((100) (9.8) (sin 30° + 0.16 cos 30°))
d = 26.9 m
Method 2: use force balance to find acceleration, then kinematics to find displacement.
First find the velocity at the bottom of the incline:
EE + PE₀ = KE
½ kx² + mgh₀ = ½ mv²
½ (80,000) (0.42)² + (100) (9.8) (10) = ½ (100) v²
v = 18.4 m/s
From the free body diagram, sum of forces in the parallel direction:
∑F = ma
-Nμ − mg sin θ = ma
-mgμ cos θ − mg sin θ = ma
-g (μ cos θ + sin θ) = a
-9.8 (0.16 cos 30° + sin 30°) = a
a = -6.26 m/s²
Given:
u = 18.4 m/s
v = 0 m/s
a = -6.26 m/s²
Find: s
v² = u² + 2as
0² = (18.4)² + 2 (-6.26) s
s = 26.9 m