Answer:
(1) a = 5.35 m/s²
(2) T = 13.35 N
(3) v = 4.62 m/s
(4)(i) W = 58.8 J
(4)(ii) W = 26.7 J
Explanation:
(1) Sum of forces on the block in the downward direction:
∑F = ma
m₃g − T = m₃a
Sum of torques on the disks:
∑τ = Iα
TR₁ = (I₁ + I₂) (a / R₁)
T = (½ m₁R₁² + ½ m₂R₂²) a / R₁²
T = ½ (m₁ + m₂ (R₂/R₁)²) a
Substitute:
m₃g − ½ (m₁ + m₂ (R₂/R₁)²) a = m₃a
m₃g = ½ (m₁ + m₂ (R₂/R₁)² + 2m₃) a
a = 2m₃g / (m₁ + m₂ (R₂/R₁)² + 2m₃)
Plug in values:
a = 2 (3) (9.8) / (1 + 2 (0.2/0.1)² + 2(3))
a = 3.92 m/s²
This does not match the expected answer. However, if m₂ = 1 kg instead of 2 kg, then:
a = 2 (3) (9.8) / (1 + 1 (0.2/0.1)² + 2(3))
a = 5.35 m/s²
(2) Use answer from (1) to find the tension.
m₃g − T = m₃a
T = m₃ (g − a)
T = (3) (9.8 − 5.35)
T = 13.35 N
(3) Given:
s = 2 m
u = 0 m/s
a = 5.35 m/s²
Find: v
v² = u² + 2as
v² = (0)² + 2 (5.35) (2)
v = 4.62 m/s
(4)(i) Work = force × distance
W = mgh
W = (3) (9.8) (2)
W = 58.8 J
(4)(ii) Work = torque × angular displacement
W = τθ = Th
W = (13.35) (2)
W = 26.7 J