Respuesta :

Answer:

[tex]\boxed{r = \dfrac{23}{\pi}}[/tex]

[tex]\boxed{r \approx 7.32}[/tex]

Step-by-step explanation:

The definition of circumference is:

[tex]C = \pi d[/tex]

where:

  • [tex]d[/tex] = diameter
  • [tex]\pi[/tex] = pi, approximately 3.14

We also know that the radius of a circle is:

[tex]r = \dfrac{1}{2}d[/tex]

Solving for [tex]d[/tex] by plugging the given information into the circumference definition:

[tex]46 = \pi d[/tex]

[tex]\dfrac{46}{\pi} = d[/tex]

Then, using that to solve for radius:

[tex]r = \dfrac{1}{2}\left(\dfrac{46}{\pi}\right)[/tex]

[tex]\boxed{r = \dfrac{23}{\pi}}[/tex]

[tex]\boxed{r \approx 7.32}[/tex]

ACCESS MORE