Answer:
[tex]\boxed{r = \dfrac{23}{\pi}}[/tex]
[tex]\boxed{r \approx 7.32}[/tex]
Step-by-step explanation:
The definition of circumference is:
[tex]C = \pi d[/tex]
where:
We also know that the radius of a circle is:
[tex]r = \dfrac{1}{2}d[/tex]
Solving for [tex]d[/tex] by plugging the given information into the circumference definition:
[tex]46 = \pi d[/tex]
[tex]\dfrac{46}{\pi} = d[/tex]
Then, using that to solve for radius:
[tex]r = \dfrac{1}{2}\left(\dfrac{46}{\pi}\right)[/tex]
[tex]\boxed{r = \dfrac{23}{\pi}}[/tex]
[tex]\boxed{r \approx 7.32}[/tex]