Answer:
[tex]{\boxed{y = 0.375}}[/tex]
Step-by-step explanation:
We are given that y varies directly as x and inversely as the square of z.
[tex]y \propto \: x[/tex]
[tex]y \propto \dfrac{1}{ {z}^{2} } [/tex]
[tex]y = k \dfrac{x}{ {z}^{2} } [/tex]
where,
k is constant of proportionality
Let's solve for k:
If y = 36, x = 75 and z = 5.
[tex]36 = k \dfrac{75}{ {(5)}^{2} }[/tex]
[tex]36 = k \dfrac{75}{25}[/tex]
[tex]36 = k \times 3 [/tex]
[tex]k = \dfrac{36}{3} [/tex]
[tex]k = 12 [/tex]
Now using the value of k, we can find the value of y:
[tex]y = k \dfrac{x}{ {z}^{2} } [/tex]
To solve for y, substitute k = 12, x = 2 and z = 8
[tex]y = 12 \dfrac{2}{ {(8)}^{2} } [/tex]
[tex]y = 12 \dfrac{2}{ 64}[/tex]
[tex]y = \dfrac{24}{ 64}[/tex]
[tex]y = 0.375 [/tex]
Therefore, when x = 2 and z = 8 the value of y is 0.375.