Respuesta :

Answer:

[tex]{\boxed{y = 0.375}}[/tex]

Step-by-step explanation:

We are given that y varies directly as x and inversely as the square of z.

[tex]y  \propto \: x[/tex]

[tex]y \propto \dfrac{1}{ {z}^{2} } [/tex]

[tex]y  = k \dfrac{x}{ {z}^{2} } [/tex]

where,

k is constant of proportionality

Let's solve for k:

If y = 36, x = 75 and z = 5.

[tex]36  = k \dfrac{75}{ {(5)}^{2} }[/tex]

[tex]36  = k \dfrac{75}{25}[/tex]

[tex]36 = k \times 3 [/tex]

[tex]k =  \dfrac{36}{3} [/tex]

[tex]k = 12 [/tex]

Now using the value of k, we can find the value of y:

[tex]y  = k \dfrac{x}{ {z}^{2} } [/tex]

To solve for y, substitute k = 12, x = 2 and z = 8

[tex]y  = 12 \dfrac{2}{ {(8)}^{2} } [/tex]

[tex]y  = 12 \dfrac{2}{ 64}[/tex]

[tex]y  = \dfrac{24}{ 64}[/tex]

[tex]y  = 0.375 [/tex]

Therefore, when  x = 2 and z = 8  the value of y is 0.375.

ACCESS MORE