Respuesta :
Answer :
- 972.4 mm^2
Explanation :
The total surface area of a rectangular pyramid is the sum of the area of the base,the area of the front,back and the side triangles.
The total surface area of a rectangle pyramid is given by,
- wl + l√((w/2)^2 + h^2) + w√((l/2)^2 + h^2)
where,
- w = width
- l = length
- h = height
plugging in,
- (18*18 + 18√((18/2)^2 + 15.6^2) + 18√((18/2)^2 + 15.6^2)) mm^2
- 972.4 mm^2
Answer:
972.36 mm² (2 d.p.)
Step-by-step explanation:
The formula to calculate the surface area of a rectangular pyramid is:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Surface Area of a Rectangular Pyramid}}\\\\SA =wl+\dfrac{1}{2}w\sqrt{4h^2+l^2}+\dfrac{1}{2}l\sqrt{4h^2+w^2}\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$SA$ is the surface area.}\\\phantom{ww}\bullet\;\textsf{$w$ is the width of the rectangular base.}\\\phantom{ww}\bullet\;\textsf{$l$ is the length of the rectangular base.}\\\phantom{ww}\bullet\;\textsf{$h$ is the height perpendicular to the base.}\end{array}}[/tex]
In this case:
- w = 18 mm
- l = 18 mm
- h = 15.6 mm
Substitute the given values into the formula and solve for SA:
[tex]SA =(18)(18)+\dfrac{1}{2}(18)\sqrt{4(15.6)^2+(18)^2}+\dfrac{1}{2}(18)\sqrt{4(15.6)^2+(18)^2}\\\\\\SA =324+9\sqrt{4(243.36)+324}+9\sqrt{4(243.36)+324}\\\\\\SA =324+9\sqrt{973.44+324}+9\sqrt{973.44+324}\\\\\\SA =324+9\sqrt{1297.44}+9\sqrt{1297.44}\\\\\\SA =972.3599000555...\\\\\\SA=972.36\; \sf mm^2\;(2\; d.p.)[/tex]
Therefore, the surface area of the given rectangular pyramid rounded to the nearest thousandth is:
[tex]\Large\boxed{\boxed{972.36\; \sf mm^2}}[/tex]