Respuesta :

Answer:

Approximately [tex]3.0\; {\rm m\cdot s^{-1}}[/tex].

Explanation:

When an object of mass [tex]m[/tex] travels at a speed of [tex]v[/tex], the kinetic energy [tex](\text{KE})[/tex] of the object would be:

[tex]\displaystyle (\text{KE}) = \frac{1}{2}\, m\, v^{2}[/tex].

In this question, it is given that [tex](\text{KE}) = 2.7\; {\rm kJ}[/tex] and [tex]m = 600\; {\rm kg}[/tex]. Rearrange the equation above to find velocity [tex]v[/tex]:

[tex]\begin{aligned}v &= \sqrt{\frac{2\, (\text{KE})}{m}}\end{aligned}[/tex].

Before substituting in the values, make sure that all quantities are in standard units:

  • Energy should be in joules: [tex](\text{KE}) = 2.7\; {\rm kJ} = 2.7 \times 10^{3}\; {\rm J}[/tex].
  • Mass should be in kilograms: [tex]m = 600\; {\rm kg}[/tex].

Also note that [tex]1\; {\rm J} = 1\; {\rm N\cdot m} = 1\; {\rm kg\cdot m^{2}\cdot s^{-2}}[/tex], so the kinetic energy in this question can be expressed as [tex](\text{KE}) = 2.7 \times 10^{3}\; {\rm kg \cdot m^{2}\cdot s^{-2}}[/tex].

[tex]\begin{aligned}v &= \sqrt{\frac{2\, (\text{KE})}{m}} \\ &= \sqrt{\frac{2\, (2.7 \times 10^{3}\; {\rm kg\cdot m^{2}\cdot s^{-2}})}{(600\; {\rm kg})}} \\ &= 3.0\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].

In other words, the velocity of this truck would be [tex]3.0\; {\rm m\cdot s^{-1}}[/tex].

ACCESS MORE