Respuesta :

Answer:

the equation of circle: x² + y² - 4x - 6y - 12 =0

Step-by-step explanation:

To find the equation of the circle that passes through the points (6, 6), (5, 7) and (2, -2), we can substitute the x and y values of the given points into a standard form of equation of circle:

[tex]\boxed{x^2+y^2+Ax+By+C=0}[/tex]

(1) substitute the x and y with (6, 6):

[tex]x^2+y^2+Ax+By+C=0[/tex]

[tex]6^2+6^2+A(6)+B(6)+C=0[/tex]

[tex]6A+6B+C=-72\ ...\ [1][/tex]

(2) substitute the x and y with (5, 7):

[tex]x^2+y^2+Ax+By+C=0[/tex]

[tex]5^2+7^2+A(5)+B(7)+C=0[/tex]

[tex]5A+7B+C=-74\ ...\ [2][/tex]

(3) substitute the x and y with (2, -2):

[tex]x^2+y^2+Ax+By+C=0[/tex]

[tex]2^2+(-2)^2+A(2)+B(-2)+C=0[/tex]

[tex]2A-2B+C=-8\ ...\ [3][/tex]

Combining [1] & [2]

6A + 6B + C = -72

5A + 7B + C = -74

--------------------------- (-)

          A - B = 2 ... [4]

Combining [1] & [3]

6A + 6B + C = -72

2A - 2B + C = -8

--------------------------- (-)

     4A + 8B = -64

       A + 2B = -16 ... [5]

Combining [4] & [5]

  A - B = 2

A + 2B = -16

------------------- (-)

    -3B = 18

       B = -6

Substitute B = -6 into [4]

A - B = 2

A - (-6) = 2

A = -4

Substitute A & B value into [3]

2A - 2B + C = -8

2(-4) - 2(-6) + C = -8

-8 + 12 + C = -8

C = -12

Therefore, the equation of circle: x² + y² - 4x - 6y - 12 =0

ACCESS MORE