Respuesta :

Answer:

  • a = 5
  • b = 5√3

Step-by-step explanation:

We can find the values of a and b using the Trigonometric Identities:

[tex]\boxed{sin\theta=\frac{opposite}{hypotenuse}}[/tex]

[tex]\boxed{cos\theta=\frac{adjacent}{hypotenuse} }[/tex]

[tex]\boxed{tan\theta=\frac{opposite}{adjacent} }[/tex]

Given:

  • θ = 30°
  • hypotenuse = AB = 10
  • opposite = BC = a
  • adjacent = AC = b

[tex]\displaystyle sin\theta=\frac{opposite}{hypotenuse}[/tex]

[tex]\displaystyle sin(30^o)=\frac{a}{10}[/tex]

[tex]a=10\times sin(30^o)[/tex]

[tex]a=10\times\frac{1}{2}[/tex]

[tex]\bf a=5[/tex]

[tex]\displaystyle cos\theta=\frac{adjacent}{hypotenuse}[/tex]

[tex]\displaystyle cos(30^o)=\frac{b}{10}[/tex]

[tex]b=10\times cos(30^o)[/tex]

[tex]b=10\times\frac{1}{2}\sqrt{3}[/tex]

[tex]\bf b=5\sqrt{3}[/tex]

Ver imagen karmenchong

Answer:

The value of a and b in the figure are 5 and 5√3.

Step-by-step explanation:

We have

From the figure,

Sin 30 = a/10

Cos 30 = b/10

Now,

Sin 30 = 1/2

Cos 30 = √3/2

Now,

1/2 = a/10

a = 5

√3/2 = b/10

b = 5√3

Thus,

The value of a and b are 5 and 5√3.