Respuesta :
Answer:
Approximately [tex]5.6\; {\rm ft \cdot s^{-1}}[/tex]
Step-by-step explanation:
Let [tex]t[/tex] denote time. Let [tex]f(t)[/tex] denote the distance between the bottom of the ladder and the base of the wall at time [tex]t\![/tex]. Similarly, let [tex]g(t)[/tex] denote the height of the top of the ladder at time [tex]t[/tex].
This question is an example of a related rates problem. Let [tex]t_{0}[/tex] denote the time at this instant.
- Rate of change in the horizontal distance [tex]f[/tex] at this instant is given: [tex]f^{\prime}(t_{0}) = (-3)\; {\rm ft \cdot s^{-1}}[/tex]. This rate of change is negative since the ladder is moving towards the wall, such that the value of [tex]f\![/tex] is being reduced.
- Value of [tex]f[/tex] at this instant is given: [tex]f(t_{0}) = 15\; {\rm ft}[/tex].
- Rate of change in height [tex]g[/tex] at this instant, [tex]g^{\prime}(t_{0})[/tex], needs to be found.
- Refer to the diagram attached. The value [tex]g(t)\![/tex] is not directly given as a function of [tex]t[/tex]. However, since the length of the ladder (hypotenuse) is given, the value of [tex]g(t)[/tex] can be expressed in terms of [tex]f(t)[/tex] using the Pythagorean Theorem:
- [tex]\displaystyle g(t) = \sqrt{17^{2} - (f(t))^{2}}[/tex].
To solve this related rates problem and find [tex]g^{\prime}(t_{0})[/tex], start by differentiating the expression for [tex]g(t)[/tex] (with respect to [tex]t[/tex]). The goal is to express [tex]g(t_{0})[/tex] in terms of the known quantities: [tex]f(t_{0}) = 15\; {\rm ft}[/tex] and [tex]f^{\prime}(t_{0}) = (-3)\; {\rm ft \cdot s^{-1}}[/tex].
[tex]\begin{aligned} g^{\prime}(t) &= \displaystyle \frac{d}{d t}\left[\sqrt{17^{2} - (f(t))^{2}}\right] \\ &= \displaystyle \frac{d}{d t}\left[\left(17^{2} - (f(t))^{2}\right)^{1/2}\right] \\ &= \frac{1}{2}\, \left(17^{2} - (f(t))^{2}\right)^{-1/2}\, \frac{d}{d t}\left[17^{2}-(f(t))^{2}\right]\\ &= \frac{1}{2}\, \left(17^{2} - (f(t))^{2}\right)^{-1/2}\, (-1)\, \frac{d}{d t}\left[(f(t))^{2}\right]\end{aligned}[/tex].
To differentiate [tex](f(t))^{2}[/tex] with respect to [tex]t[/tex] implicitly, apply the chain rule of differentiation:
[tex]\begin{aligned} \frac{d}{dt}\left[(f(t))^{2}\right] &= 2\, (f(t))\, \frac{d}{dt}\left[f(t)\right] = 2\, f(t)\, f^{\prime}(t)\end{aligned}[/tex].
Hence, the expression for [tex]g^{\prime}(t)[/tex] becomes:
[tex]\begin{aligned} g^{\prime}(t) &= \displaystyle \frac{d}{d t}\left[\sqrt{17^{2} - (f(t))^{2}}\right] \\ &= \cdots \\ &= \frac{1}{2}\, \left(17^{2} - (f(t))^{2}\right)^{-1/2}\, (-1)\, \frac{d}{d t}\left[(f(t))^{2}\right] \\ &= \frac{1}{2}\, \left(17^{2} - (f(t))^{2}\right)^{-1/2}\, (-1)\, \left(2\, f(t)\, f^{\prime}(t)\right) \\ &= \frac{-\, f(t)\, f^{\prime}(t)}{\sqrt{17^{2} - (f(t))^{2}}}\end{aligned}[/tex].
Substitute in [tex]t = t_{0}[/tex] into [tex]g^{\prime}(t)[/tex] and evaluate to find the rate of change in [tex]g[/tex] at this instant, [tex]g^{\prime}(t_{0})[/tex]:
[tex]\begin{aligned} g^{\prime}(t_{0}) &= \frac{-\, f(t_{0})\, f^{\prime}(t_{0})}{\sqrt{17^{2} - (f(t_{0}))^{2}}} \\ &= \frac{-(15\; {\rm ft})\, ((-3)\; {\rm ft\cdot s^{-1}})}{\sqrt{(17\; {\rm ft})^{2} - (15\; {\rm ft})^{2}}} \\ &= \frac{45}{8}\; {\rm ft\cdot s^{-1}} \\ &\approx 5.6\; {\rm ft\cdot s^{-1}}\end{aligned}[/tex].
In other words, the top of the ladder would be moving upward at approximately [tex]5.6\; {\rm ft \cdot s^{-1}}[/tex] at this instance.
![Ver imagen jacob193](https://us-static.z-dn.net/files/df5/46df6df044e8d516683a022776531c73.png)