Respuesta :
Answer:
see explanation
Step-by-step explanation:
The area (A) of a rectangle is calculated as
A = length × breadth
given A = 15x²y + 20xy and breadth = 5xy , then
15x²y + 20xy = length × 5xy ( divide both sides by 5xy )
[tex]\frac{15x^2y+20xy}{5xy}[/tex] = length ( simplify left side )
[tex]\frac{15x^2y}{5xy}[/tex] + [tex]\frac{20xy}{5xy}[/tex] = length , then
length = 3x + 4 units
The perimeter (P) of a rectangle is calculated as
P = 2( length + breadth )
= 2(3x + 4 + 5xy ) ← distribute parenthesis
= 6x + 8 +10xy
That is
length = 3x + 4 units and perimeter = 10xy + 6x + 8 units
Answer:
[tex]\sf \textsf{Length} = 3x + 4 [/tex]
[tex]\sf \textsf{Perimeter} = 6x + 10xy + 8 [/tex]
Step-by-step explanation:
To find the length of the rectangle, we can use the formula for the area of a rectangle:
[tex] \Large\boxed{\boxed{\sf \textsf{Area} = \textsf{Length} \times \textsf{Breadth}}} [/tex]
Given that the area of the rectangle is [tex]\sf 15x^2y + 20xy [/tex] square units and the breadth is [tex]\sf 5xy [/tex] units, we can set up the equation:
[tex]\sf 15x^2y + 20xy = \textsf{Length} \times 5xy [/tex]
[tex]\sf \textsf{Length} = \dfrac{15x^2y + 20xy}{5xy} [/tex]
[tex]\sf \textsf{Length} = \dfrac{5xy(3x + 4)}{5xy} [/tex]
[tex]\sf \textsf{Length} = 3x + 4 [/tex]
So, the length of the rectangle is [tex]\sf 3x + 4 [/tex].
To find the perimeter of the rectangle, we use the formula for the perimeter of a rectangle:
[tex]\Large\boxed{\boxed{\sf \textsf{Perimeter} = 2(\textsf{Length} + \textsf{Breadth})}} [/tex]
Substituting the given values:
[tex]\sf \textsf{Perimeter} = 2((3x + 4) + 5xy) [/tex]
[tex]\sf \textsf{Perimeter} = 2(3x + 4 + 5xy) [/tex]
[tex]\sf \textsf{Perimeter} = 2(3x + 5xy + 4) [/tex]
[tex]\sf \textsf{Perimeter} = 2(3x + 5xy) + 2(4) [/tex]
[tex]\sf \textsf{Perimeter} = 6x + 10xy + 8 [/tex]
So, the perimeter of the rectangle is [tex]\sf 6x + 10xy + 8 [/tex].