Respuesta :

Answer:

[tex]\frac{22x+3}{(3x+2)(2x-1)}[/tex]

Step-by-step explanation:

given

[tex]\frac{5}{3x+2}[/tex] + [tex]\frac{4}{2x-1}[/tex]

Before we can add the fractions, we require them to have a common denominator

multiply the numerator/denominator of the first fraction by (2x - 1 ) and

multiply the numerator/denominator of the second fraction by (3x + 2)

= [tex]\frac{5(2x-1)}{(3x+2)(2x-1)}[/tex] + [tex]\frac{4(3x+2)}{(3x+2)(2x-1)}[/tex]

distribute and simplify the numerators , over the common denominator

= [tex]\frac{10x-5+12x+8}{(3x+2)(2x-1)}[/tex]

= [tex]\frac{22x+3}{(3x+2)(2x-1)}[/tex] ← in simplest form

ACCESS MORE