Respuesta :
To calculate the speed of the airliner, you can use the formula for kinetic energy:
1. Given data:
- Mass of the airliner = 7.7 x 10^4 kg
- Kinetic energy = 1.0 x 10^9 J
2. Formula for kinetic energy:
- Kinetic energy = 0.5 x mass x speed^2
3. Rearrange the formula to solve for speed (v):
- speed (v) = square root(2 x Kinetic Energy / mass)
4. Substitute the values:
- speed (v) = square root(2 x 1.0 x 10^9 / 7.7 x 10^4)
5. Calculate the speed:
- speed (v) = square root(2 x 1.0 x 10^9 / 7.7 x 10^4) = square root(2 x 12987.01) = square root(25974.02) ≈ 161.25 m/s
Therefore, the speed of the airliner is approximately 161.25 m/s.
Answer:
[tex]\sf 161.16 \, \textsf{m/s} [/tex]
Explanation:
To find the speed of the airliner, we'll use the formula for kinetic energy:
[tex] \Large\boxed{\boxed{\sf KE = \dfrac{1}{2}mv^2}} [/tex]
where:
- KE is the kinetic energy,
- m is the mass of the airliner, and
- v is the velocity (speed) of the airliner.
Given that:
- [tex]\sf KE = 1.0 \times 10^9 \, \textsf{J} [/tex]
- [tex]\sf m = 7.7 \times 10^4 \, \textsf{kg} [/tex]
Substitute the value in above formula and solve for [tex]\sf v [/tex]:
[tex]\sf 1.0 \times 10^9 = \dfrac{1}{2} \times (7.7 \times 10^4) \times v^2 [/tex]
First, let's simplify the expression:
[tex]\sf 1.0 \times 10^9 = 3.85 \times 10^4 \times v^2 [/tex]
Now, solve for [tex]\sf v^2 [/tex]:
[tex]\sf v^2 = \dfrac{1.0 \times 10^9}{3.85 \times 10^4} [/tex]
[tex]\sf v^2 \approx 25974.02597 [/tex]
Now, take the square root of both sides to find [tex]\sf v [/tex]:
[tex]\sf v \approx \sqrt{25974.02597} [/tex]
[tex]\sf v \approx 161.1645928 [/tex]
[tex]\sf v \approx 161.16 \, \textsf{m/s (in 2 d.p.)} [/tex]
So, the speed of the airliner is approximately [tex]\sf 161.16 \, \textsf{m/s} [/tex].