Respuesta :

To calculate the speed of the airliner, you can use the formula for kinetic energy:

1. Given data:

- Mass of the airliner  = 7.7 x 10^4 kg

- Kinetic energy  = 1.0 x 10^9 J

2. Formula for kinetic energy:

- Kinetic energy = 0.5 x mass x speed^2

3. Rearrange the formula to solve for speed (v):

- speed (v) = square root(2 x Kinetic Energy / mass)

4. Substitute the values:

- speed (v) = square root(2 x 1.0 x 10^9 / 7.7 x 10^4)

5. Calculate the speed:

- speed (v) = square root(2 x 1.0 x 10^9 / 7.7 x 10^4) = square root(2 x 12987.01) = square root(25974.02) ≈ 161.25 m/s

Therefore, the speed of the airliner is approximately 161.25 m/s.

msm555

Answer:

[tex]\sf 161.16 \, \textsf{m/s} [/tex]

Explanation:

To find the speed of the airliner, we'll use the formula for kinetic energy:

[tex] \Large\boxed{\boxed{\sf KE = \dfrac{1}{2}mv^2}} [/tex]

where:

  • KE is the kinetic energy,
  • m is the mass of the airliner, and
  • v is the velocity (speed) of the airliner.

Given that:

  • [tex]\sf KE = 1.0 \times 10^9 \, \textsf{J} [/tex]
  • [tex]\sf m = 7.7 \times 10^4 \, \textsf{kg} [/tex]

Substitute the value in above formula and solve for [tex]\sf v [/tex]:

[tex]\sf 1.0 \times 10^9 = \dfrac{1}{2} \times (7.7 \times 10^4) \times v^2 [/tex]

First, let's simplify the expression:

[tex]\sf 1.0 \times 10^9 = 3.85 \times 10^4 \times v^2 [/tex]

Now, solve for [tex]\sf v^2 [/tex]:

[tex]\sf v^2 = \dfrac{1.0 \times 10^9}{3.85 \times 10^4} [/tex]

[tex]\sf v^2 \approx 25974.02597 [/tex]

Now, take the square root of both sides to find [tex]\sf v [/tex]:

[tex]\sf v \approx \sqrt{25974.02597} [/tex]

[tex]\sf v \approx 161.1645928 [/tex]

[tex]\sf v \approx 161.16 \, \textsf{m/s (in 2 d.p.)} [/tex]

So, the speed of the airliner is approximately [tex]\sf 161.16 \, \textsf{m/s} [/tex].

ACCESS MORE