The distance between any 2 points P(a,b) and
Q(c,d) in the coordinate plane, is given by the formula:
[tex]|PQ|= \sqrt{ (a-c)^{2} + (b-d)^{2}}[/tex]
Using this formula we calculate the distances |PA|, |PB|, |PC|, |PD| and |PE| and compare to 5.
[tex]|PA|= \sqrt{ (-2-2)^{2} + (-2-1)^{2}}= \sqrt{16+9}= \sqrt{25}=5 [/tex]
[tex]|PB|= \sqrt{ (-2-4)^{2} + (-2+1)^{2}}= \sqrt{36+1}= \sqrt{37} \approx 6 [/tex]
[tex]|PC|= \sqrt{ (-2-2)^{2} + (-2+3)^{2}}= \sqrt{16+1}= \sqrt{17}\approx4 [/tex]
[tex]|PD|= \sqrt{ (-2+6)^{2} + (-2+6)^{2}}= \sqrt{16+16}= \sqrt{32}\ \textgreater \ \sqrt{25}=5 [/tex]
[tex]|PE|= \sqrt{ (-2+5)^{2} + (-2-1)^{2}}= \sqrt{9+9}= \sqrt{16}=4 [/tex]
Answer: B and D