What is the area of the composite shape. Use 3.14 for n and round to the nearest hundredth. Show all your work
![What is the area of the composite shape Use 314 for n and round to the nearest hundredth Show all your work class=](https://us-static.z-dn.net/files/dae/b3ca15e5f7607efd534554b6e5708949.jpg)
area of triangle
area of rectangle
area of regular pentagon
area of sector
thus, the total area would be
Answer:
Step-by-step explanation:
The area of any triangle is half the product of its base and height:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a triangle}}\\\\A=\dfrac{1}{2}bh\\\\\textsf{where:}\\\phantom{ww}\bullet\; \textsf{$A$ is the area.}\\ \phantom{ww}\bullet\;\textsf{$b$ is the base.}\\ \phantom{ww}\bullet\;\textsf{$h$ is the height.}\end{array}}[/tex]
In this case:
Substitute the values of b and h into the area equation and solve for A:
[tex]A=\dfrac{1}{2} \cdot 3 \cdot 2\\\\\\A=\dfrac{1}{2}\cdot 6\\\\\\A=3\; \sf square\;units[/tex]
Therefore, the area of the triangle is:
[tex]\Large\boxed{\boxed{\textsf{Area of triangle:}\quad 3\;\sf units^2}}[/tex]
[tex]\dotfill[/tex]
The area of any rectangle is the product of its width and length:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a rectangle}}\\\\A=wl\\\\\textsf{where:}\\\phantom{ww}\bullet\; \textsf{$A$ is the area.}\\ \phantom{ww}\bullet\;\textsf{$w$ is the width.}\\ \phantom{ww}\bullet\;\textsf{$l$ is the length.}\end{array}}[/tex]
In this case:
Substitute the values of w and l into the area equation and solve for A:
[tex]A=2 \cdot 3\\\\A=6\; \sf square\;units[/tex]
Therefore, the area of the rectangle is:
[tex]\Large\boxed{\boxed{\textsf{Area of rectangle:}\quad 6\;\sf units^2}}[/tex]
[tex]\dotfill[/tex]
The formula for the area of a regular polygon is:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a regular polygon}}\\\\A=\dfrac{n\cdot s\cdot a}{2}\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$n$ is the number of sides.}\\ \phantom{ww}\bullet\;\textsf{$s$ is the length of one side.}\\ \phantom{ww}\bullet\;\textsf{$a$ is the apothem.}\end{array}}[/tex]
In this case:
Substitute the values of n, s and a into the area equation and solve for A:
[tex]A=\dfrac{5 \cdot 3 \cdot 2}{2}\\\\\\A=\dfrac{30}{2}\\\\\\A=15\; \sf square\;units[/tex]
Therefore, the area of the regular polygon is:
[tex]\Large\boxed{\boxed{\textsf{Area of regular polygon:}\quad 15\;\sf units^2}}[/tex]
[tex]\dotfill[/tex]
The formula for the area of a sector is:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a sector}}\\\\A=\left(\dfrac{\theta}{360^{\circ}}\right) \pi r^2\\\\\textsf{where:}\\\phantom{ww}\bullet\;\;\textsf{$r$ is the radius.}\\\phantom{ww}\bullet\;\;\textsf{$\theta$ is the angle measured in degrees.}\end{array}}[/tex]
In this case:
Substitute the values of θ r and π into the area equation and solve for A:
[tex]A=\left(\dfrac{66^{\circ}}{360^{\circ}}\right) \cdot 3.14 \cdot 3^2\\\\\\A=\dfrac{11}{60}\cdot 3.14 \cdot 9\\\\\\A=\dfrac{11}{60}\cdot28.26\\\\\\A=5.181\\\\\\A=5.18\; \sf square\;units[/tex]
Therefore, the area of the sector is:
[tex]\Large\boxed{\boxed{\textsf{Area of sector:}\quad 5.18\;\sf units^2}}[/tex]
[tex]\dotfill[/tex]
To calculate the total area, sum the individual areas:
[tex]\textsf{Total area}=3+6+15+5.18\\\\\textsf{Total area}=9+15+5.18\\\\\textsf{Total area}=24+5.18\\\\\textsf{Total area}=29.18\; \sf square\;units[/tex]
Therefore, the total area of the composite shape is:
[tex]\Large\boxed{\boxed{\textsf{Total:}\quad 29.18\;\sf units^2}}[/tex]