Answer:
[tex] A_\triangle = 40 \, \textsf{in}^2 [/tex]
[tex] A \boxed{\quad } = 144 \, \textsf{in}^2 [/tex]
[tex] A_{\textsf{total}} = 184 \, \textsf{in}^2 [/tex]
Step-by-step explanation:
To find the total area of the figure, which consists of a triangle and a rectangle, we add the individual areas of each shape.
Area of Triangle ([tex]A_\triangle[/tex]):
The area of a triangle is given by the formula:
[tex]A_\triangle = \dfrac{1}{2} \times \textsf{base} \times \textsf{height}[/tex].
Given:
- Base = 16 in,
- Height = 5 in.
Substitute the value and calculate:
[tex] A_\triangle = \dfrac{1}{2} \times 16 \times 5 [/tex]
[tex] A_\triangle = 40 \, \textsf{in}^2 [/tex]
Area of Rectangle ([tex]A\boxed{}[/tex]):
The area of a rectangle is given by the formula:
[tex]A\boxed{\quad} = \textsf{length} \times \textsf{width}[/tex].
Given:
- Length = 16 in,
- Width = 9 in.
Substitute the value and calculate:
[tex] A\boxed{\quad } = 16 \times 9 [/tex]
[tex] A\boxed{\quad } = 144 \, \textsf{in}^2 [/tex]
Total Area of the Figure ([tex]A_{\textsf{total}})[/tex]:
To find the total area, add the individual areas of the triangle and the rectangle.
[tex] A_{\textsf{total}} = A_\triangle + A\boxed{\quad} [/tex]
[tex] A_{\textsf{total}} = 40 + 144 [/tex]
[tex] A_{\textsf{total}} = 184 \, \textsf{in}^2 [/tex]
Therefore, the total area of the figure is [tex]184 \, \textsf{in}^2[/tex].