Respuesta :
Answer:
x = 0.42
Step-by-step explanation:
To solve the equation [tex]8^x = \dfrac{3\sqrt{2}}{4^x}[/tex] using logarithms, we can use the natural logarithm (ln) to maintain consistency.
Given:
[tex]8^x = \dfrac{3\sqrt{2}}{4^x}[/tex]
Take the natural logarithm of both sides:
[tex] \ln(8^x) = \ln\left(\dfrac{3\sqrt{2}}{4^x}\right) [/tex]
Using the property of logarithms that [tex] \ln(a^b) = b \cdot \ln(a) [/tex] and [tex] \ln\left(\dfrac{a}{b}\right) = \ln(a) - \ln(b) [/tex], we can simplify the equation:
[tex] x \cdot \ln(8) = \ln(3\sqrt{2}) - x \cdot \ln(4) [/tex]
Now, isolate [tex]x[/tex] by moving all terms involving [tex]x[/tex] to one side of the equation:
[tex] x \cdot \ln(8) + x \cdot \ln(4) = \ln(3\sqrt{2}) [/tex]
Factor out [tex]x[/tex]:
[tex] x \cdot (\ln(8) + \ln(4)) = \ln(3\sqrt{2}) [/tex]
Combine the logarithmic terms:
[tex] x \cdot \ln(32) = \ln(3\sqrt{2}) [/tex]
Now, solve for [tex]x[/tex]:
[tex] x = \dfrac{\ln(3\sqrt{2})}{\ln(32)} [/tex]
Using a calculator or computational tool:
[tex] x \approx \dfrac{1.445185879 }{3.465735903} [/tex]
[tex] x \approx 0.4169925001 [/tex]
[tex] x \approx 0.42 \textsf{(in nearest hundredth)}[/tex]
Therefore, the value of x is 0.42.
