Respuesta :

msm555

Answer:

[tex] A_{\textsf{triangle}} = 58.5 \, \textsf{cm}^2 [/tex]

Step-by-step explanation:

To find the area of the triangle that divides the parallelogram in half, we need to calculate the area of the parallelogram first, and then we can find the area of the triangle.

Given:

  • Base of the parallelogram [tex]= 13 \, \textsf{cm}[/tex]
  • Height of the parallelogram [tex]= 19 \, \textsf{cm}[/tex]

The area [tex]A[/tex] of a parallelogram is given by the formula:

[tex] A = \textsf{Base} \times \textsf{Height} [/tex]

So, for the given parallelogram:

[tex] A_{\textsf{parallelogram}} = 13 \times 9 [/tex]

[tex] A_{\textsf{parallelogram}} = 117 \, \textsf{cm}^2 [/tex]

Now, since the triangle divides the parallelogram in half, the area of the triangle is half the area of the parallelogram.

[tex] A_{\textsf{triangle}} = \dfrac{1}{2} \times A_{\textsf{parallelogram}} [/tex]

[tex] A_{\textsf{triangle}} = \dfrac{1}{2} \times 117 [/tex]

[tex] A_{\textsf{triangle}} = 58.5 \, \textsf{cm}^2 [/tex]

So, the area of the triangle that divides the parallelogram in half is [tex]58.5 \, \textsf{cm}^2[/tex].

ACCESS MORE
EDU ACCESS