Find the area of the triangle that divides the
parallelogram in half.
13 cm
19 cm

Answer:
[tex] A_{\textsf{triangle}} = 58.5 \, \textsf{cm}^2 [/tex]
Step-by-step explanation:
To find the area of the triangle that divides the parallelogram in half, we need to calculate the area of the parallelogram first, and then we can find the area of the triangle.
Given:
The area [tex]A[/tex] of a parallelogram is given by the formula:
[tex] A = \textsf{Base} \times \textsf{Height} [/tex]
So, for the given parallelogram:
[tex] A_{\textsf{parallelogram}} = 13 \times 9 [/tex]
[tex] A_{\textsf{parallelogram}} = 117 \, \textsf{cm}^2 [/tex]
Now, since the triangle divides the parallelogram in half, the area of the triangle is half the area of the parallelogram.
[tex] A_{\textsf{triangle}} = \dfrac{1}{2} \times A_{\textsf{parallelogram}} [/tex]
[tex] A_{\textsf{triangle}} = \dfrac{1}{2} \times 117 [/tex]
[tex] A_{\textsf{triangle}} = 58.5 \, \textsf{cm}^2 [/tex]
So, the area of the triangle that divides the parallelogram in half is [tex]58.5 \, \textsf{cm}^2[/tex].